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Abstract. For over a decade, nonparametric modelling has been successfully applied
to studying nonlinear structures in ®nancial time series. It is well known that the usual
nonparametric models often have less than satisfactory performance when dealing with
more than one lag. When the mean has an additive structure, however, better estimation
methods are available which fully exploit such a structure. Although in the past such
nonparametric applications had been focused more on the estimation of the conditional
mean, it is equally if not more important to measure the future risk of the series along
with the mean. For the volatility function, i.e. the conditional variance given the past, a
multiplicative structure is more appropriate than an additive structure, as the volatility
is a positive scale function and a multiplicative model provides a better interpretation
of each lagged value's in¯uence on such a function. In this paper we consider the joint
estimation of both the additive mean and the multiplicative volatility. The technique
used is marginally integrated local polynomial estimation. The procedure is applied to
the deutschmark/US dollar daily exchange returns.

Keywords. Additive mean; geometric ergodicity; geometric mixing; local polynomial
regression; marginal integration; multiplicative volatility; stationary probability density.

1. INTRODUCTION

The prediction of ®nancial time series based on daily data is in general dif®cult,
since after differencing most of the structure in the mean disappears. This is why
random-walk-based models have been used in this context. The situation is
different, though, for high frequency time series such as foreign exchange rates.
Autoregressive models have been applied for such data with speci®c assumptions
on the error distribution (see Engle, 1982; Engle and Ng, 1993). Some of the
most common nonlinear autoregressive models were proposed by Tong (1978,
1983), Haggan and Ozaki (1981), Chan and Tong (1986) and Granger and
TeraÈsvirta (1993). In particular it is important not only to predict future values
but also to evaluate the risk, or the volatility, of the series. In the class of
autoregressive conditional heteroskedastic (ARCH) models the volatility or the
scale of innovative random shocks is a function of past values. Over the past 15
years, the strict parametric forms of these models have been questioned and
more ¯exible nonparametric approaches have been studied as an alternative (see
Robinson, 1983, 1984; Meese and Rose, 1991; Engle and Gonzalez-Rivera,
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1991; Drost and Nijman, 1993). A more recent review is by HaÈrdle and Chen
(1995).

One of the models studied for foreign exchange rates, for example, is the
conditional heteroskedastic autoregressive nonlinear (CHARN) model with one
lag (Bossaerts et al., 1996):

Yi � m(Yiÿ1)� s(Yiÿ1)îi (1:1)

where the fîigi>1 are independent and identically distributed (i.i.d.) random
variables, E(îi) � E(î3

i ) � 0, E(î2
i ) � 1 and E(î4

i ) � m4 ,1, and Y0 is
independent of the fîig. An analysis of the estimated residuals still revealed
autocorrelation. Hence, more than one lagged variable in the modelling of the
mean function m(:) and the scale function s(:) seems to be the necessary step in
a further analysis.

We consider therefore in this paper the CHARN model of the form

Yi � m(Yiÿ1, Yiÿ2, . . ., Yiÿd)� s(Yiÿ1, Yiÿ2, . . ., Yiÿd)îi (1:2)

where the fîigi>1 are as in (1.1) and Y0, Y1, . . ., Ydÿ1 are random variables
independent of the fîig. The conditional volatility function is v(Yiÿ1,
Yiÿ2, . . ., Yiÿd) � s2(Yiÿ1, Yiÿ2, . . ., Yiÿd). This form of the CHARN model in
®nancial time series has been studied by GourieÂroux and Monfort (1992) and
Masry and Tjùstheim (1995a). The estimation problem for the functions m(:) and
v(:) has been treated by HaÈrdle and Tsybakov (1997) for the case d � 1 with the
local polynomial regression method. HaÈrdle et al. (1998) studied vector
autoregression with an arbitrary number of lags and arbitrary dimension. We
de®ne the CHARN model for general dimensions; however, from a practical
point of view, the method can be expected to suffer from the statistical
imprecision introduced by a large number of lags, in particular in the small-
sample case. We illustrate the method with a foreign exchange rate application.
Through lag selection (see Tschernig and Yang, 1999), we ended up using the
®rst lag and the third lag of the time series.

Stone (1982) showed in the i.i.d. regression case that, if the mean function
m(:) is a sum of univariate functions, then the one-dimensional convergence
rate can be achieved for the estimation of m(:)'s component functions. Tools
for analysis of additive models in this context have been developed by Hastie
and Tibshirani (1990), including the BRUTO algorithm for nonparametric
modelling which Chen and Tsay (1993a, 1993b) applied to autoregressive time
series. The `integration method' (but not the term marginal integration) was
introduced by Auestad and Tjùstheim (1991) and further explored by Tjùstheim
and Austad (1994) for the precise analysis, previously unavailable, of additive
model estimators. It provides closed form bias and various expressions of the
one-dimensional function estimator. The term marginal integration was
introduced by Linton and Nielsen (1995), who worked in the i.i.d. regression
setting. Marginal integration has recently been employed in the autoregression
setting by Masry and Tjùstheim (1995a, 1995b) and in the i.i.d. regression
setting by Linton and HaÈrdle (1996) and Severance-Lossin and Sperlich (1995).
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The idea of the integration method is quite straightforward: in the regression
setting for instance, if the mean function m(x1, x2, . . ., xd) is a sum of
univariate functions, say

m(x1, x2, . . ., xd) � c�
Xd

â�1

mâ(xâ) (1:3)

then

mâ(xâ) �
�

m(x1, x2, . . ., xd) dF(x1, . . ., bxâ, . . ., xd)ÿ C

where F(x1, . . ., bxâ, . . ., xd) is the joint distribution function of all the variables
X 1, . . ., X d with the âth Xâ removed, and C is an additive constant. Hence each
component function mâ is identi®ed from m(x1, x2, . . ., xd) through a simple
integration procedure. Linton and Nielsen (1995) introduced the idea of applying
integration estimation to multiplicative structures in dimension 2; in this paper
we extend the integration formula to multiplicative volatility functions of any
dimension.

To estimate the parameters in the CHARN model, we have to estimate the
conditional mean function m(:) and the conditional variance or volatility
function v(:) at the same time. The ¯exibility of our CHARN model is
important in a number of economic applications, e.g. the prediction of ®nancial
time series, where the volatility function often plays an even more important
role than the mean function. It is therefore bene®cial to obtain the joint
estimation of both m(:) and v(:) for model (1.2). The volatility function v(:)
measures the scale and is always positive; therefore it seems more appropriate
to model its changes multiplicatively rather than additively, as in the EGARCH
model of Nelson (1991). In this paper we jointly estimate the additive (mean)
and the multiplicative (volatility) functions with the integration method.

We therefore assume that the mean function m(:) is additive while the
volatility function v(Yiÿ1, Yiÿ2, . . ., Yiÿd) � s(Yiÿ1, Yiÿ2, . . ., Yiÿd)2 is multi-
plicative:

m(Yiÿ1, Yiÿ2, . . ., Yiÿd) � cm �
Xd

â�1

mâ(Yiÿâ) (1:4)

v(Yiÿ1, Yiÿ2, . . ., Yiÿd) � cv

Yd

â�1

vâ(Yiÿâ) (1:5)

where cm and cv are constants, and fmâ(:)gd
â�1 and fvâ(:)gd

â�1 are sets of
unknown functions. Besides the better rate of convergence for the estimation of
fmâ(:)gd

â�1 and fvâ(:)gd
â�1 as discussed above, these univariate functions also

allow us to quantify the impact of each lagged variable Yiÿâ on the mean and
volatility more directly.

To formulate the identi®ability conditions for the functions fmâ(:)gd
â�1 and
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fvâ(:)gd
â�1, the process Yi has to converge to a stationary distribution. If we

denote by X i the vector (Yiÿ1, Yiÿ2, . . ., Yiÿd)T, then fX ig is a d-dimensional
Markov process. Many authors, such as Tweedie (1975), Nummelin and
Tuominen (1982), Mokkadem (1987), Tjùstheim (1990) and Diebolt and
GueÂgan (1993), have developed geometric ergodicity criteria for Markov
processes. Here we state some general assumptions.

(A1) The random variable îi has a density function p(:). This density p(:)
and the volatility function v(:) are strictly positive in a neighborhood of x.

(A2) There exists an r . 0 such that for
Pd

â�1jyiÿâj. r, the functions m(:)
and s(:) satisfy

jm(yiÿ1, yiÿ2, . . ., yiÿd)j < C1 1�
Xd

â�1

jyiÿâj
0@ 1A

js(yiÿ1, yiÿ2, . . ., yiÿd)j < C2 1�
Xd

â�1

jyiÿâj
0@ 1A

with C1 � C2 Ejî1j, 1=d.

These assumptions are standard in this context in order to prevent the
process from either dying our or exploding. Ango Nze (1992) proved the
following.

Lemma 1.1. Under assumptions (A1) and (A2) the process fX ig is
geometrically ergodic, i.e. it is ergodic with stationary probability measure
ð(:) such that, for almost every x,

kPn(:jx)ÿ ð(:)kTV � O(rn)

for some 0 < r, 1, where Pn(:jx) is the probability measure of X n given
X d � x and k:kTV is the total variation distance.

This lemma ensures that the process fX ig is asymptotically stationary. We
denote by F(:) the stationary distribution function. For all 1 < á < d, we
denote by Fá(:) the stationary distribution function of the áth variable, and F(:)
the stationary distribution function with the áth variable deleted. We allow
ourselves to use the short-hand notation Yâ for Yiÿâ. Let xâ denote the
deterministic version of Yiÿâ. We can now state the identi®ability conditions.

(A3) Emâ(Y ) � � mâ(xâ) dFâ(xâ) � 0, for any Y that has distribution Fâ(:)
and for all 1 < â < d.

(A4) E
Q

1<â<d,â 6�ávâ(Yâ) �Q 1<â<d,â 6�ávâ(xâ) d F(x) � 1 for any (Y1,
Y2, . . ., Yd) that has distribution F(:), and for all 1 < á < d.
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Let x � (x1, x2, . . ., xd)T 2 Rd be a point where we will estimate the mean
and volatility functions. We de®ne for every 1 < á < d, Má(xá) � cm�
má(xá), Vá(xá) � cvvá(xá); then

m(x) �
Xd

â�1

Mâ(xâ)ÿ (d ÿ 1)cm v(x) � cÿ(dÿ1)
v

Yd

â�1

Vâ(xâ): (1:6)

In what follows, we adopt the notation X i � (Yiÿá, Yi) to highlight a
particular direction of interest Yiÿá, for all 1 < á < d, while Yi is the (d ÿ 1)-
dimensional vector that consists of all the remaining Yiÿâ, 1 < â < d, â 6� á.
Assumptions (A3) and (A4) yield the following marginal integration formulae
for the unknown functions:�

m(xá, x) dF(x) � Má(xá) � cm � má(xá) (1:7)�
v(xá, x) d F(x) � Vá(xá) � cvvá(xá): (1:8)

These show that the univariate functions fmâ(:)gd
â�1 and fvâ(:)gd

â�1 are
identi®able from the functions m(:) and v(:) up to some constants. And similar
formulae exist for these constants as well:

cm �
�

m(x) dF(x) � E(Y ) cv � 1

d

Xd

á�1

� Y
1<â<d,â 6�á

Vâ(xâ) dF(x)

8<:
9=;

1=(dÿ1)

:

(1:9)

These are the basic equations that will be used later in our estimation procedure.
In Section 2, we present the estimators of fmâ(:)gd

â�1 and fvâ(:)gd
â�1 and

study their asymptotic properties. In Section 3, we discuss the application of
the result to deutschmark/US dollar daily return data. In Section 4, proofs of
theorems are given. Inspection of the proofs in Section 4 shows that the result
of the present paper also holds (with obvious reformulation) for the multivariate
nonparametric regression model with heteroskedastic errors: Yi � m(X i1,
X i2, . . ., X id)� s(X i1, X i2, . . ., Xid)îi, where îi are as in (1.2), (X i1, X i2, . . .,
X id , Yi) are i.i.d., and the design points fX i1, X i2, . . ., X idg are independent of
fîig.

2. THE ESTIMATORS

The estimators given in this section are based on local polynomial regression,
®rst studied by Stone (1977) and Katkovnik (1979). The idea, as will be seen
below, is to estimate an unknown function locally by polynomials, whose
coef®cients are calculated through kernel-weighted least squares (see also
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Tsybakov, 1986; Ruppert and Wand, 1994; Wand and Jones, 1995; Fan and
Gijbels, 1996).

Now we let p . 0 be any odd integer which will be the degree of polynomial
used later. For any function K(:) we denote kKk2

2 �
�

K2(u) du, while for a
kernel function K(:) we de®ne Kh(u) � K(u=h)=h, and ìr(K) � � urK(u) du.
We shall consider two kernel functions K(:) and L(:) that satisfy the following.

(A5) Both kernels K(:) and L(:) are bounded, symmetric, compactly
supported and Lipschitz continuous with

�
K(u) du � � L(u) du � 1; while

K(:) is positive, the kernel L(:) is of order q . (d ÿ 1)( p� 1)=2.

When estimating functions má(:) and vá(:) for a particular á, a multiplicative
kernel is used consisting of K for the áth variable and L for all other variables.

We assume the following about the functions involved in the estimation.

(A6) The functions má(:) and vá(:) have bounded Lipschitz continuous
( p� 1)th derivatives for all 1 < á < d.

(A7) The stationary distribution function F(:) has a density j(:). The
function j(:) together with the densities já(:) of Fá(:) and j(:) of F(:) are
uniformly bounded away from zero and in®nity and have bounded Lipschitz
continuous ( p� 1)th derivatives, for all 1 < á < d.

Lastly, we assume the following for two bandwidths, g for the kernel L, h
for the kernel K.

(A8) Bandwidths g and h satisfy gdÿ1=h2 !1, nhg2(dÿ1)=ln2(n)!1,
gq=h p�1 ! 0 and h � h0 nÿ1=(2 p�3):

Note that assumption (A8) requires that L(:) have the order given in (A5). In
particular, if we use local linear regression, i.e. p � 1, then the order of L(:) is
q . d ÿ 1.

We can de®ne the integration estimator for Má(xá) as

M̂á(xá) �
�

m̂(xá, x) d �̂F(x) � (nÿ d � 1)ÿ1
Xn

l�d

m̂(xá, Yl)

where m̂(xá, x) is an estimate of m(:) at (xá, x) and �̂F(x) is the empirical
cumulative distribution function. The estimator M̂á(xá) is thus based on the
sample version of Equation (1.7). The estimator for cm is simply the sample
mean of the Yj according to (1.9):

ĉm � Ê(Y ) � (nÿ d � 1)ÿ1
Xn

j�d

Yj

where Ê is the empirical mean of Y . These estimators are then used to obtain
estimators for má(xá) and m(x):
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m̂á(xá) � M̂á(xá)ÿ ĉm

m̂(x) � ĉm �
Xd

â�1

m̂â(xâ) �
Xd

â�1

M̂â(xâ)ÿ (d ÿ 1)ĉm:

We now de®ne m̂(xá, Yl) as follows. For all l � d, d � 1, . . ., n and ë � 0,
. . ., p let

Z � f(Yiÿá ÿ xá)ëg(nÿd�1)3( p�1)

Wl � diag
1

nÿ d � 1
Kh(Yiÿá ÿ xá)Lg(Yi ÿ Yl)

� �n

i�d

where we denote

diag(a) �
a1 0 . . . 0

0 a2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . ak

26664
37775

for any vector

a �
a1

..

.

ak

0B@
1CA 2 Rk :

Also write

Y � (Yi)d<i<n Y 2 � (Y 2
i )d<i<n

and let eë be a ( p� 1) vector of zeros whose (ë� 1)th element is 1. Then

m̂(xá, Yl) � eT
0 (ZTWlZ)ÿ1 ZTWlY

which is the usual local polynomial estimator of m(:) at (xá, Yl) of order p in
the áth direction and order 0 in all other directions. Our estimator M̂á(xá) is
therefore

M̂á(xá) � (nÿ d � 1)ÿ1
Xn

l�d

eT
0 (ZTWlZ)ÿ1 ZTWlY :

Note that

E(Y 2
i jXi) � m2(xi)� v(Xi):

Thus a similar estimator for Vá(xá) based on Equation (1.8) is de®ned as

V̂á(xá) � (nÿ d � 1)ÿ1
Xn

l�d

feT
0 (ZTWlZ)ÿ1 ZTWlY

2 ÿ m̂(xá, Yl)
2g
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and that of cv is based on (1.9):

ĉv � 1

d

Xd

á�1

1

nÿ d � 1

Xn

j�d

Y
1<â<d,â 6�á

V̂â(Y jÿâ)

8<:
9=;

1=(dÿ1)

:

We then obtain estimators for vá(xá) and v(x) as the following:

v̂á(xá) � V̂á(xá)ĉÿ1
v

v̂(x) � ĉv

Yd

â�1

v̂â(xâ) � ĉÿ(dÿ1)
v

Yd

â�1

V̂â(xâ):

Our ®rst theorem gives the estimation result of the mean functions.

Theorem 1. Under assumptions (A1)±(A8), as n!1, for any á

(nh)1=2fM̂á(xá)ÿ Má(xá)ÿ h p�1bmá(xá)g !D Nf0, ó 2
má(xá)g (2:1)

where

bmá(xá) � ì p�1(K�0 )

( p� 1)!
m� p�1�
á (xá)

and

ó 2
má(xá) � kK�0 k2

2

�
v

j
(xá, w)j2(w) dw

while for any á 6� â, as n!1 we have

cov[(nh)1=2fM̂á(xá)ÿ Má(xá)g, (nh)1=2fM̂â(xâ)ÿ Mâ(xâ)g]! 0: (2:2)

Furthermore, as n!1

n1=2(ĉm ÿ cm) !D Nf0, ó 2
cm(x)g

for some implicitly de®ned constant ó 2
cm. The asymptotics of (nh)1=2fm̂á(xá) ÿ

má(xá)g are the same as those of the (nh)1=2fM̂á(xá)ÿ Má(xá)g, while

(nh)1=2fm̂(x)ÿ m(x)ÿ h p�1bm(x)g !D Nf0, ó 2
m(x)g (2:3)

where

bm(x) �
Xd

á�1

bmá(xá)

and
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ó 2
m(x) �

Xd

á�1

ó 2
má(xá):

The second theorem is about the estimation of the volatility functions.

Theorem 2. Under assumptions (A1)±(A8), as n!1, for any á

(nh)1=2fV̂á(xá)ÿ Vá(xá)ÿ h p�1bVá(xá)g !D Nf0, ó 2
Vá(xá)g (2:4)

where

bVá(xá) � ì p�1(K�0 )

( p� 1)!
fV � p�1�

á (xá)� 2m� p�1�
á (xá)M(xá)g

ÿ
�

2bm(xá, w)m(xá, w)j(w) dw

and

ó 2
Vá(xá) � kK�0 k2

2

�
v(m4v� 4m2)

j
(xá, w)j2(w) dw:

Also, as n!1
cov[(nh)1=2fV̂á(xá)ÿ Vá(xá)g, (nh)1=2fM̂á(xá)ÿ Má(xá)g]

! 2kK�0 k2
2

�
vm

j
(xá, w)j2(w) dw � cVá(xá) (2:5)

while for any á 6� â we have

cov[(nh)1=2fV̂á(xá)ÿ Vá(xá)g, (nh)1=2fV̂â(xâ)ÿ Vâ(xâ)g]! 0

cov[(nh)1=2fV̂á(xá)ÿ Vá(xá)g, (nh)1=2fM̂â(xâ)ÿ Mâ(xâ)g]! 0: (2:6)

Furthermore

n1=2(ĉv ÿ cv ÿ bch p�1) !D Nf0, ó 2
cv)

for some implicitly de®ned constant ó 2
cv and

bc � 1

d(d ÿ 1)cdÿ2
v

Xd

á�1

� X
1<â<d,â 6�á

Y
1<ã<d,ã6�á,â

Vã(yã)

( )
bvâ(yâ)j(y) dy:

For any á

(nh)1=2fv̂á(xá)ÿ vá(xá)ÿ h p�1bvá(xá)g !D Nf0, ó 2
vá(xá)g (2:7)

where
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bvá(xá) � 1

cv
fbVá(xá)ÿ bcvá(xá)g

and

ó 2
vá(xá) � 1

c2
v

ó 2
Vá(xá)

while

(nh)1=2fv̂(x)ÿ v(x)ÿ h p�1bv(x)g !D N(0, ó 2
v(x)g

where

bv(x) � v(x)
Xd

â�1

bVâ(xâ)

Vâ(xâ)
ÿ (d ÿ 1)cÿ1

v bc

8<:
9=;

and

ó 2
v(x) � v2(x)

Xd

â�1

ó 2
Vâ(xâ)

V 2
â(xâ)

:

The next theorem summarizes all the previous results together in the form of
joint asymptotic normality for all estimators.

Theorem 3. Under assumptions (A1)±(A8), denote by B(x) the vector-
valued function

fbm1(x1), bm2(x2), . . ., bmd(xd), bm(x), bv1(x1), bv2(x2), . . ., bvd(xd), bv(x), 0, n1=2bcgT

and by Ó(x) the following matrix:

Ó11 Ó12 Ó13 Ó14 0d31 0d31

Ó21 Ó22 Ó23 Ó24 0 0

Ó31 Ó32 Ó33 Ó34 0d31 0d31

Ó41 Ó42 Ó43 Ó44 0 0

013d 0 013d 0 ó 2
cm 0

013d 0 013d 0 0 ó 2
cv

26666664

37777775
where

Ó11 � diagfó 2
má(xá)gd

á�1 Ó22 � ó 2
m(x)

Ó33 � diagfó 2
vá(xá)gd

á�1 Ó44 � ó 2
v(x)

Ó12 � ÓT
21 � fó 2

má(xá)g1<á<d Ó13 � ÓT
31 � diag

cVá(xá)

cv

� �d

á�1

588 L. YANG, W. HAÈ RDLE AND J. P. NIELSEN

# Blackwell Publishers Ltd 1999



Ó14 � ÓT
41 �

cVá(xá)

cv

v(x)

Vá(xá)

� �
1<á<d

Ó23 � ÓT
32 �

cVá(xá)

cv

� �T

1<á<d

Ó24 � ÓT
42 �

Pd
á�1

cVá(xá)

cv

v(x)

Vá(xá)
Ó34 � ÓT

43 � ó 2
vá(xá)

v(x)

Vá(xá)

� �
1<á<d

:

Then, as n!1

(nh)1=2 3

m̂1(x1)ÿ m1(x1)

m̂2(x2)ÿ m2(x2)

..

.

m̂d(xd)ÿ md(xd)

m̂(x)ÿ m(x)

v̂1(x1)ÿ v1(x1)

v̂2(x2)ÿ v2(x2)

..

.

v̂d(xd)ÿ vd(xd)

v̂(x)ÿ v(x)

(1=h1=2)(ĉm ÿ cm)

(1=h1=2)(ĉv ÿ cv)

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;

ÿ B(x)h p�1 !D Nf0(2d�4)3(2d�4), Ó(x)g

We comment here that, although Theorem 3 is obtained for a local
polynomial of degree p, where p is an odd integer, the same result holds for
p even, in particular for p � 0, i.e. the Nadaraya±Watson estimator. We
choose to have p odd here because it does not involve the derivatives of the
design density in the bias and variance expressions, and thus is `design-
adaptive'.

3. AN APPLICATION

To illustrate our method with an example, we study the daily returns of the
deutschmark/US dollar exchange rates from 2 January 1980 to 26 May 1986, a
total of 1603 observations. The data are plotted in Figure 1.

We estimate the conditional mean and volatility functions of this series at
lags 1 and 3. The choice of these two lags is based on the ®ndings of
Tschernig and Yang (1999), who have developed a nonparametric ®nal
prediction error criterion for determining signi®cant lagged variables. For the
estimation, we use subjectively selected bandwidths h � 0:0062, g � 0:0074,
and the Nadaraya±Watson estimators. We ®nd that, except for some boundary
effects, the mean functions mâ(:) are very close to zero. The estimated
volatility function v̂â(:) depicted in Figures 2 and 3, however, provides some
fresh insights. Both the computation and graphics are done in XploRe (see
HaÈrdle et al., 1995).
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Figure 1. The daily returns of the deutschmark/US dollar (DEM/USD) exchange rates.

Figure 2. Volatility function v̂1(:) (thick) and its quadratic ®t (thin).

590 L. YANG, W. HAÈ RDLE AND J. P. NIELSEN

# Blackwell Publishers Ltd 1999



Figures 2 and 3 show that the lagged variables impact the volatility function
asymmetrically as both v̂1(:) and v̂3(:) are quite skewed, especially v̂3(:); we
can see this by comparing v̂1(:) and v̂3(:) with their ordinary least squares
quadratic ®ts which are the thin lines in the ®gures. Some kind of
nonparametric testing would be needed to check the signi®cance of these
observed features.

Our observations about v̂1(:) and v̂3(:) have added weight to what some other
studies had also suggested: that the basic GARCH model is perhaps
inappropriate for the process we have here. Our analysis has gone a step
further in nonparametric estimation of times series as the signi®cant lagged
variables are ®rst identi®ed by a nonparametric criterion (see Tschernig and
Yang (1999) for details). This example of identifying signi®cant lags and
measuring their impacts points to a new comprehensive nonparametric approach
to time series analysis.

4. PROOFS

Theorems 1 through 3 are proved in this section by the marginal integration
technique as in Severance-Lossin and Sperlich (1995). We make use of the
following geometric mixing results.

Lemma 4.1. (Davydov, 1973). Under assumptions (A1) and (A2) and if,
further, X d is distributed with the stationary distribution ð(:), then the process
fX ig is geometrically strongly mixing with the mixing coef®cients satisfying
á(n) < c0rn

0 for some c0 . 0 and 0 ,r0 , 1.

Figure 3. Volatility function v̂3(:) (thick) and its quadratic ®t (thin).
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By arguments which are very similar to those used by HaÈrdle et al. (1998),
the above mixing lemma entails that the sample mean of any bounded
continuous function of the observations Yj converges in both probability and
mean to the stationary population mean. The situation here is slightly more
complicated than in that paper as we now have to average functions of two
variables Yj and Yl, one at a time. Nevertheless, the difference is more formal
than substantial. We therefore neither state nor prove any such results here, but
use them to derive the various formulae of asymptotic biases and variances as
these are the new contributions of this paper.

The proof of the next lemma is standard and omitted. It employs the strong
mixing condition of Lemma 1.1 and Lemma 4.1.

Lemma 4.2. Let

Dl � (ZTWlZ)ÿ1 ÿ 1

j(xá, Yl)
Hÿ1Sÿ1 Hÿ1:

cov(Dl, Dk) � rj lÿkj Op h� ln n

(nhgdÿ1)1=2

� �� �2

(4:1)

uniformly in xá and Yl, where H � diag(hë)0<ë< p.

Proofs of asymptotic normality in this section are based on the central limit
theorem of Liptser and Shirjaev (1980). Conditions for applying this theorem
will not be veri®ed here as they are all standard. Set S �
f� us� t K(u) dug0<s, t< p, which contains all the moments of S up to order 2 p.
Denote Sÿ1 � (sst)0<s, t< p and de®ne

K�ë (u) �
Xp

t�0

së tu
tK(u): (4:2)

This K�ë (:) is called the ëth-equivalent kernel. It has moments�
uqK�ë (u) du �

0 q < p, q 6� ë
1 q � ë
Ëë q � p� 1

8<: (4:3)

and K�0 (:) would yield the bias rates of nÿ2 p=(2 p�1) for local polynomial
estimation (see Wand and Jones, 1995).

To prove Theorem 1, we begin by observing the following simple equation:

eT
0 (ZTWlZ)ÿ1 ZTWlZeë � 0 0 6� ë

1 0 � ë:

�
(4:4)

Thus
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M̂á(xá)ÿ Má(xá) � (nÿ d � 1)ÿ1
Xn

l�d

eT
0 (ZTWlZ)ÿ1 ZTWlY

ÿ (nÿ d � 1)ÿ1
Xn

l�d

eT
0 (ZTWlZ)ÿ1 ZTWlZe0 Má(xá)

ÿ (nÿ d � 1)ÿ1
Xn

l�d

Xp

í�1

m(í)
á (xá)

í!
eT

0 (ZTWlZ)ÿ1 ZTWlZeí

� (nÿ d � 1)ÿ1
Xn

l�d

eT
0 (ZTWlZ)ÿ1 ZTWlfY ÿ Má(xá)g

ÿ (nÿ d � 1)ÿ1
Xn

l�d

Xp

í�1

m(í)
á (xá)

í!
eT

0 (ZTWlZ)ÿ1 ZTWlZeí:

Now assumption (A3) combined with the strong mixing properties of our process
implies that for every â � 1, 2, . . ., d, â 6� á,

(nÿ d � 1)ÿ1
Xn

l�d

mâ(Ylÿâ) � Op

1

n1=2

� �
and thus by (4.4) we also have (using the mixing properties of the process, see
Lemma 1.1, Lemma 4.1 and Lemma 4.2)

(nÿ d � 1)ÿ1
Xn

l�d

eT
0 (ZTWlZ)ÿ1 ZTWlZe0 mâ(Ylÿâ) � Op

1

n1=2

� �
:

So we have

M̂á(xá)ÿ Má(xá)

� (nÿ d � 1)ÿ1
Xn

l�d

eT
0 (ZTWlZ)ÿ1 ZTWl Y ÿ

X
1<â<d,â 6�á

mâ(Ylÿâ)ÿ Má(xá)

( )

ÿ (nÿ d � 1)ÿ1
Xn

l�d

Xp

í�1

m(í)
á (xá)

í!
eT

0 (ZTWlZ)ÿ1 ZTWlZeí � Op

1

n1=2

� �

� (nÿ d � 1)ÿ1
Xn

l�d

eT
0 (ZTWlZ)ÿ1 ZTWl

3 Y ÿ
Xp

í�1

m(í)
á (xá)

í!
Zeí ÿ

X
1<â<d,â 6�á

mâ(Ylÿâ)ÿ Má(xá)

( )
or
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M̂á(xá)ÿ Má(xá)

� (nÿ d � 1)ÿ1
Xn

l�d

eT
0 (ZTWlZ)ÿ1 ZTWl

3 Y ÿ cm ÿ
Xp

í�0

m(í)
á (xá)

í!
Zeí ÿ

X
1<â<d,â 6�á

mâ(Ylÿâ)

( )
: (4:5)

Note that the ëth element of

ZTWl Y ÿ cm ÿ
Xp

í�0

m(í)
á (xá)

í!
Zeí ÿ

X
1<â<d,â 6�á

mâ(Ylÿâ)

( )
is

(nÿ d � 1)ÿ1
Xn

j�d

(Y jÿá ÿ xá)ëKh(Y jÿá ÿ xá)Lg(Y j ÿ Yl)

3 Yj ÿ cm ÿ
Xp

í�0

m(í)
á (xá)

í!
(Y jÿá ÿ xá)í ÿ

X
1<â<d,â 6�á

mâ(Ylÿâ)

( )
� Ië l,1 � Ië l,2 � Ië l,3

in which

Ië l,1 � (nÿ d � 1)ÿ1
Xn

j�d

Ië lj,1

where

Ië lj,1 � (Y jÿá ÿ xá)ëKh(Y jÿá ÿ xá)Lg(Y j ÿ Yl)

3 má(Y jÿá)ÿ
Xp

í�0

m(í)
á (xá)

í!
(Y jÿá ÿ xá)í

( )
(4:6)

Ië l,2 �
X

1<â<d,â 6�á
(nÿ d � 1)ÿ1

Xn

j�d

Ië lâ j,2

where

Ië lâ j,2 � (Y jÿá ÿ xá)ëKh(Y jÿá ÿ xá)Lg(Y j ÿ Yl)fmâ(Y jÿâ)ÿ mâ(Ylÿâ)g (4:7)

and

Ië l,3 � (nÿ d � 1)ÿ1
Xn

j�d

Ië lj,3 (4:8)

where

Ië lj,3 � (Y jÿá ÿ xá)ëKh(Y jÿá ÿ xá)Lg(Y j ÿ Yl)s(Xj)î j: (4:9)
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Lemma 4.3. As n!1,

E(Ië l1 j1,1 Ië l2 j2,1) � rmin(j l1ÿ l2j,j j1ÿ j2j)O(h2ë=hgdÿ1)

uniformly, for ë � 0, . . ., p and l1, l2, j1, j2 � d, . . ., n.

E(Ië l1â1 j1,1 Ië l2â2 j2,1) � rmin(j l1ÿ l2j,j j1ÿ j2j)O(h2ë=hgdÿ1)

uniformly, for ë � 0, . . ., p and l1, l2, j1, j2 � d, . . ., n and 1 < â < d.

E(Ië l1 j1,3 Ië l2 j2,3) � rmin(j l1ÿ l2j,j j1ÿ j2j)O(h2ë=hgdÿ1)

uniformly, for ë � 0, . . ., p and l1, l2, j1, j2 � d, . . ., n.

Proof. We only show this for the ®rst case

E(Ië l1 j1,3 Ië l2 j2,3) � rmin(j l1ÿ l2j,j j1ÿ j2j)

3

�
(wá ÿ xá)2ëK2

h(wá ÿ xá)L2
g(wÿ Yl)v(w)j(w) dwf1� o(1)g

where we have used Lemma 1.1. By a change of variable wá � xá � huá,
w � Yl � gu,

E(Ië l1 j1,3 Ië l2 j2,3) � (hgdÿ1)ÿ1f1� o(1)g
3

�
(huá)2ëK2(uá)L2(u)v(xá � huá, Yl � gu)j(xá � huá, Yl � gu) du: j

Now

O
h2ë

nhgdÿ1

 !
Op h� ln n

(nhgdÿ1)1=2

� �� �2

� Op

h2ë�2

nhgdÿ1
� h2ë ln2 n

n2 h2 g2(dÿ1)

 !

� h2ë

nh
Op

h2

gdÿ1
� ln2 n

nhg2(dÿ1)

 !

� op

h2ë

nh

� �
by using assumption (A8). Employing Lemma 4.2 and Lemma 4.3 now givesXp

ë�0

(nÿ d � 1)ÿ1
Xn

l�d

eT
0

3 (ZTWlZ)ÿ1 ÿ 1

j(xá, Yl)
Hÿ1Sÿ1 Hÿ1

� �
eë(Ië l,1 � Ië l,2 � Ië l,3)

�
Xp

ë�0

hÿëop

hë

(nh)1=2

( )
� op

1

(nh)1=2

� �
� op(h p�1) � op(nÿ( p�1)=(2 p�3)):
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If we only have to consider the diagonal terms, then this fact is easily recognized
(this is when we can ignore the correlation of the I terms with the rest). The
correlation can be taken care of, however, by writing the Ië l,k as sums (see above),
squaring the expression and conditioning on the `I components'. The exponential
decay of the correlations in Lemma 4.2 and Lemma 4.3 ensures that the order of
magnitude is the same as if only the diagonal terms were considered.

Proof of Theorem 1. Making the aforementioned substitution, we have in
particular

M̂á(xá)ÿ Má(xá)ÿ op(h p�1)

� (nÿ d � 1)ÿ1
Xn

l�d

1

j(xá, Yl)
eT

0 Hÿ1Sÿ1 Hÿ1 ZTWl

3 Y ÿ cm ÿ
Xp

í�0

m(í)
á (xá)

í!
Zeí ÿ

X
1<â<d,â 6�á

mâ(Ylÿâ)

( )
which, by using (4.6), (4.7) and the de®nition (4.2), is equal to

(nÿ d � 1)ÿ1
Xn

l�d

1

j(xá, Yl)
(nÿ d � 1)ÿ1

Xn

j�d

K�0h(Y jÿá ÿ xá)Lg(Y j ÿ Yl)

3 má(Y jÿá)ÿ
Xp

í�0

m(í)
á (xá)

í!
(Y jÿá ÿ xá)í

"

�
X

1<â<d,â 6�á
fmâ(Y jÿâ)ÿ mâ(Ylÿâ)g � s(X j)î j

#

� (nÿ d � 1)ÿ1
Xn

j�d

f1� op(1)g
�

dw
K�0h(Y jÿá ÿ xá)

j(xá, Y j ÿ gw)
j(Y j ÿ gw)L(w)

3 má(Y jÿá)ÿ
Xp

í�0

m(í)
á (xá)

í!
(Y jÿá ÿ xá)í

"

�
X

1<â<d,â 6�á
fmâ(Y jÿâ)ÿ mâ(Y jÿâ ÿ gwâ)g � s(X j)î j

#
:

And because L has order q, so the above is equal to

(nÿ d � 1)ÿ1
Xn

j�d

f1� op(1)g K�0h(Y jÿá ÿ xá)

j(xá, Y j)
j(Y j)

3 má(Y jÿá)ÿ
Xp

í�0

m(í)
á (xá)

í!
(Y jÿá ÿ xá)í � s(X j)î j

( )
� Op(gq): (4:10)
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Thus we have shown that

M̂á(xá)ÿ Má(xá) � B� V � op(h p�1)

in which

B � (nÿ d � 1)ÿ1
Xn

j�d

K�0h(Y jÿá ÿ xá)

j(xá, Y j)
j(Y j)

3 má(Y jÿá)ÿ
Xp

í�0

m(í)
á (xá)

í!
(Y jÿá ÿ xá)í

( )
and

V � (nÿ d � 1)ÿ1
Xn

j�d

K�0h(Y jÿá ÿ xá)

j(xá, Y j)
j(Y j)fs(X j)î jg:

Now (by using the mixing properties of our process)

B � f1� op(1)g
�

K�0h(zÿ xá)

j(xá, w
j(w)

3 má(Y jÿá)ÿ
Xp

í�0

m(í)
á (xá)

í!
(Y jÿá ÿ xá)í

( )
j(z, w) dz dw:

After substituting z � xá � hu, B becomes

B � f1� op(1)g
�

K�0 (u)

j(xá, w)
j(w)

3 má(xá � hu)ÿ
Xp

í�0

1

í!
m(í)
á (xá)(hu)í

( )
j(xá � hu, w) du dw

which, by using the moment properties of the equivalent kernel as in (4.3),
equals

f1� op(1)g ì p�1(K�0 )

( p� 1)!
m( p�1)
á (xá)bmá(xá)h p�1 � bmá(xá)h p�1 � op(h p�1)

(4:11)

where bmá(xá) is as given in Theorem 1. Meanwhile, V has mean zero and its
variance is

(nÿ d � 1)ÿ1

�
K�0h(zÿ xá)

j(xá, w)
j(w)s(z, w)

( )2

j(z, w) dz dwf1� o(1)g

� nÿ1 hÿ1ó 2
má(xá)f1� o(1)g: (4:12)
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Equations (4.11) and (4.12) together establish (2.1). Equation (2.2) is derived by
standard techniques as in Linton and HaÈrdle (1996). Equation (2.3) and all
the remaining formulas of Theorem 1 then follow directly from (2.1) and (2.2)
as the various (nh)1=2fM̂á(xá)ÿ Má(xá)g are all asymptotically uncorrelated
and so the variance of (nh)1=2fm̂(x)ÿ m(x)g is simply the sum of all their
variances, and the mean of (nh)1=2fm̂(x)ÿ m(x)g is simply the sum of all their
means. j

Proof of Theorem 2. We prove similar results for V̂á(xá):

V̂á(xá)ÿ Vá(xá) � (nÿ d � 1)ÿ1
Xn

l�d

feT
0 (ZTWlZ)ÿ1 ZTWlY

2

ÿ m̂(xá, Ŷ l)
2g ÿ Vá(xá)

� (nÿ d � 1)ÿ1
Xn

l�d

eT
0 (ZTWlZ)ÿ1 ZTWl

3 fY 2 ÿ m̂(xá, Yl)
2 ÿ Vá(xá)g

� (nÿ d � 1)ÿ1
Xn

l�d

eT
0 (ZTWlZ)ÿ1 ZTWl

3 fY 2 ÿ m(xá, Yl)
2 � m(xá, Yl)

2 ÿ m̂(xá, Yl)
2 ÿ Vá(xá)g:

Now note that by assumption (A4)

(nÿ d � 1)ÿ1
Xn

j�d

Y
â 6�á

vâ(Y jÿâ) � 1� Op

1

n1=2

� �
and also that

Y 2
j � m(Xj)

2 � 22m(X j)s(X j)î j � v(X j)(î
2
j ÿ 1)� v(X j):

So similar to (4.10) we have

V̂á(xá)ÿ Vá(xá) � T1 � T2 � T3 � T4 � T5 � op(h p�1)

where

T1 � (nÿ d � 1)ÿ1
Xn

l�d

fm(xá, Yl)
2 ÿ m̂(xá, Yl)

2g

T2 � (nÿ d � 1)ÿ1
Xn

j�d

K�0h(Y jÿá ÿ xá)

j(xá, Y j)
j(Y j)fm(X j)

2 ÿ m(xá, Y j)
2g
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T3 � (nÿ d � 1)ÿ1
Xn

j�d

K�0h(Y jÿá ÿ xá)

j(xá, Y j)
j(Y j) v(X j)ÿ Vá(xá)

Y
â 6�á

vâ(Y jÿâ)

( )

T4 � (nÿ d � 1)ÿ1
Xn

j�d

K�0h(Y jÿá ÿ xá)

j(xá, Y j)
j(Y j)f2m(X j)s(Xj)î jg

T5 � (nÿ d � 1)ÿ1
Xn

j�d

K�0h(Y jÿá ÿ xá)

j(xá, Y j)
j(Y j)fv(X j)(î

2
j ÿ 1)g:

We derive the asymptotics of each of these terms. Recall that Theorem 1
provides the following:

(nh)1=2fm̂(x)ÿ m(x)ÿ h p�1bm(x)g !D Nf0, ó 2
m(x)g:

Therefore

T1 � ÿ(nÿ d � 1)ÿ1
Xn

l�d

2fm(xá, Yl)ÿ m̂(xá, Yl)gm(xá, Yl)� op(h p�1)

� ÿ2Efm(xá, Yn)ÿ m̂(xá, Yn)gm(xá, Yn)� op(h p�1)

� ÿh p�1

�
2bm(xá, w)m(xá, w)j(w) dw� op(h p�1): (4:13)

Next we see, by using the substitution z1 � xá � hu, that

T2 � f1� op(1)g
�

K�0h(zÿ xá)

j(xá, w)
j(w)fm(z, w)2 ÿ m(xá, w)2gj(z, w) dz dw

� ì p�1(K�0 )

( p� 1)!

�
2m� p�1�

á (îá)m(xá, w)j(w) dw� op(h p�1)

� 2ì p�1(K�0 )

( p� 1)!
m� p�1�
á (xá)M(xá)� op(h p�1) (4:14)

T3 � f1� op(1)g
�

K�0h(zÿ xá)

j(xá, w)
j(w)fVá(z)Vá(w)ÿ Vá(xá)Vá(w)gj(z, w) dz dw

� ì p�1(K�0 )

( p� 1)!

�
V � p�1�
á (xá)Vá(w)j(w) dw� op(h p�1)

� ì p�1(K�0 )

( p� 1)!
V � p�1�
á (xá)� op(h p�1): (4:15)
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To calculate the terms T4 and T5, note ®rst that they both have mean zero
and are uncorrelated, so it is only necessary to calculate their variances and the
sum.

var(T4) � (nÿ d � 1)ÿ1 E
K�0h(Ynÿá ÿ xá)j(Yn)

j(xá, Yn)
2m(X d)s(X d)

( )2

f1� o(1)g

� (nÿ d � 1)ÿ1

�
K�0h(zÿ xá)

j(xá, w)
2m(z, w)s(z, w)j(w)

( )2

3 j(z, w) dz dwf1� o(1)g

� 1

nh
kK�0 k2

2

�
4m2v

j
(xá, w)j2(w) dwf1� o(1)g (4:16)

and similarly

var(T5) � 1

nh
kK�0 k2

2

�
m4v2

j
(xá, w)j2(w) dwf1� o(1)g: (4:17)

Putting together Equations (4.13) through (4.17) gives the asymptotic
expressions of V̂á(xá) in Theorem 2. To get the formula for cVá(x) in (2.5),
note that the variance term V in the proof of Theorem 1 is uncorrelated to all
the Ti except T4, and the asymptotic correlation is (plus some higher order
terms)

(nÿ d � 1)ÿ1 E
K�0h(Ydÿá ÿ xá)j(Yd)

j(xá, Yd)
2m(Xd)s(X d)

( )

3
K�0h(Ydÿá ÿ xá)j(Yd)

j(xá, Yd)
s(X d)

( )

which can be veri®ed to be exactly (1=nh)cVá(x)f1� o(1)g by the same
technique as that used above. Equation (2.6) is easy to prove as (2.2) of
Theorem 1.

To get the asymptotic properties of ĉv, we use the above results on V̂á(x) and
the mixing properties of our process to get
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ĉdÿ1
v ÿ cdÿ1

v � 1

d

Xd

á�1

1

nÿ d � 1

Xn

j�d

Y
1<â<d,â 6�á

V̂â(Y jÿâ)ÿ cdÿ1
v

� 1

d

Xd

á�1

1

nÿ d � 1

Xn

j�d

Y
1<â<d,â 6�á

3 fVâ(Y jÿâ)� V̂â(Y jÿâ)ÿ Vâ(Y jÿâ)g ÿ cdÿ1
v

� 1

d

Xd

á�1

1

nÿ d � 1

Xn

j�d

Y
1<â<d,â 6�á

Vâ(Y jÿâ)ÿ cdÿ1
v

� 1

d

Xd

á�1

1

nÿ d � 1

Xn

j�d

X
1<â<d,â6�á

Y
1<ã<d,ã 6�á,â

Vã(Y jÿã)

( )

3 fV̂â(Y jÿâ)ÿ Vâ(Y jÿâ)g

� 1

d

Xd

á�1

1

nÿ d � 1

Xn

j�d

X
1<â<d,â 6�á

Y
1<ã<d,ã 6�á,â

Vã(Y jÿã)

( )

3 fV̂â(Y jÿâ)ÿ Vâ(Y jÿâ)g � Op

1

n1=2

� �
� S1 � S2 � S3 � op(h p�1)

where

S1 � 1

d

Xd

á�1

1

nÿ d � 1

Xn

j�d

X
1<â<d,â 6�á

Y
1<ã<d,ã 6�á,â

Vã(Y jÿã)

( )
bvâ(Y jÿâ)h p�1

S2 � 1

d

Xd

á�1

1

(nÿ d � 1)2

Xn

j�d

X
1<â<d,â 6�á

Y
1<ã<d,ã6�á,â

Vã(Y jÿã)

( )

3
Xn

k�d

K�0h(Ykÿâ ÿ Y jÿâ)

j(Y jÿâ, Yk)
j(Yk)f2m(Xk)s(X k)îkg

" #

S3 � 1

d

Xd

á�1

1

(nÿ d � 1)2

Xn

j�d

X
1<â<d,â 6�á

Y
1<ã<d,ã6�á,â

Vã(Y jÿã)

( )

3
Xn

k�d

K�0h(Ykÿâ ÿ Y jÿâ)

j(Y jÿâ, Yk)
j(Yk)fv(X k)(î2

k ÿ 1)g
" #

:
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These three terms can be written as (again using the mixing properties)

S1 � h p�1

d

Xd

á�1

� X
1<â<d,â 6�á

Y
1<ã<d,ã6�á,â

Vã(yã)

( )
bvâ(yâ)j(y) dy� Op

1

n1=2

� �
and

S2 �
Xn

k�d

2m(X k)s(X k)îk

nÿ d � 1

1

d

Xd

á�1

X
1<â<d,â 6�á

� Y
1<ã<d,ã6�á,â

Vã(yã)

( )

3
K�0h(Ykÿâ ÿ yâ)

j(yâ, Yk)
j(Yk)j(y) dyf1� op(1)g

�
Xn

k�d

2m(X k)s(X k)îk

nÿ d � 1

1

d

Xd

á�1

X
1<â<d,â 6�á

� Y
1<ã<d,ã6�á,â

Vã(yã)

( )

3
K�0 (u)j(Yk)j(Ykÿâ ÿ hu, y) du d y

j(Ykÿâ ÿ hu, Yk)
f1� op(1)g

�
Xn

k�d

2m(X k)s(X k)îk

(nÿ d � 1)j(Yk)

1

d

Xd

á�1

X
1<â<d,â 6�á

� Y
1<ã<d,ã6�á,â

Vã(yã)

( )

3 j(Yk)j(Ykÿâ, y) d yf1� op(1)g
from which it is clear that S2 satis®es a central limit theorem with n1=2 rate of
convergence, which is also the case for S3. Thus

ĉv � cdÿ1
v � h p�1

d

Xd

á�1

� X
1<â<d,â 6�á

24
Y

1<ã<d,ã6�á,â

Vã(yã)

( )
bvâ(yâ)j(y) dy� 1

n1=2
Z

351=(dÿ1)

where Z !D N(0, ó 2) for some ó 2; applying the Taylor expansion gives the
result on ĉv and the rest of Theorem 2 follows directly. j

Proof of Theorem 3. We simply put together the results of the previous
two theorems. Note that the joint normality follows from the fact that the
stochastic part of all the estimates is based on the î j and the î2

j ÿ 1. Thus, any
linear combinations of the estimates also have similar forms to those treated in
Theorem 1. j
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