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Abstract. For over a decade, nonparametric modelling has been successfully applied
to studying nonlinear structures in financial time series. It is well known that the usual
nonparametric models often have less than satisfactory performance when dealing with
more than one lag. When the mean has an additive structure, however, better estimation
methods are available which fully exploit such a structure. Although in the past such
nonparametric applications had been focused more on the estimation of the conditional
mean, it is equally if not more important to measure the future risk of the series along
with the mean. For the volatility function, i.e. the conditional variance given the past, a
multiplicative structure is more appropriate than an additive structure, as the volatility
is a positive scale function and a multiplicative model provides a better interpretation
of each lagged value’s influence on such a function. In this paper we consider the joint
estimation of both the additive mean and the multiplicative volatility. The technique
used is marginally integrated local polynomial estimation. The procedure is applied to
the deutschmark/US dollar daily exchange returns.

Keywords. Additive mean; geometric ergodicity; geometric mixing; local polynomial
regression; marginal integration; multiplicative volatility; stationary probability density.

1. INTRODUCTION

The prediction of financial time series based on daily data is in general difficult,
since after differencing most of the structure in the mean disappears. This is why
random-walk-based models have been used in this context. The situation is
different, though, for high frequency time series such as foreign exchange rates.
Autoregressive models have been applied for such data with specific assumptions
on the error distribution (see Engle, 1982; Engle and Ng, 1993). Some of the
most common nonlinear autoregressive models were proposed by Tong (1978,
1983), Haggan and Ozaki (1981), Chan and Tong (1986) and Granger and
Terdsvirta (1993). In particular it is important not only to predict future values
but also to evaluate the risk, or the volatility, of the series. In the class of
autoregressive conditional heteroskedastic (ARCH) models the volatility or the
scale of innovative random shocks is a function of past values. Over the past 15
years, the strict parametric forms of these models have been questioned and
more flexible nonparametric approaches have been studied as an alternative (see
Robinson, 1983, 1984; Meese and Rose, 1991; Engle and Gonzalez-Rivera,
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1991; Drost and Nijman, 1993). A more recent review is by Héirdle and Chen
(1995).

One of the models studied for foreign exchange rates, for example, is the
conditional heteroskedastic autoregressive nonlinear (CHARN) model with one
lag (Bossaerts et al., 1996):

Yi=m(Yi_1) + s(Yi_1)&; (1.1)

where the {&;};=; are independent and identically distributed (i.i.d.) random
variables, E(&;) = E(E?) =0, E(Ef) =1 and E(é—'?) =my<oo, and Y, is
independent of the {&;}. An analysis of the estimated residuals still revealed
autocorrelation. Hence, more than one lagged variable in the modelling of the
mean function m(-) and the scale function s(-) seems to be the necessary step in
a further analysis.

We consider therefore in this paper the CHARN model of the form

Yi=m(Yiy, Yieo, .., Yicg) +s(Yiz1, Yico, ., Yica)&i (1.2)

where the {&;};=; are as in (1.1) and Yy, Y1, ..., Y4—1 are random variables
independent of the {&;}. The conditional volatility function is ov(¥;_1,
Yiia, .. Yiig) = s*(Yi_1, Yi_a, ..., Yi_g). This form of the CHARN model in
financial time series has been studied by Gouriéroux and Monfort (1992) and
Masry and Tjestheim (1995a). The estimation problem for the functions m(-) and
v(-) has been treated by Hirdle and Tsybakov (1997) for the case d = 1 with the
local polynomial regression method. Hérdle et al. (1998) studied vector
autoregression with an arbitrary number of lags and arbitrary dimension. We
define the CHARN model for general dimensions; however, from a practical
point of view, the method can be expected to suffer from the statistical
imprecision introduced by a large number of lags, in particular in the small-
sample case. We illustrate the method with a foreign exchange rate application.
Through lag selection (see Tschernig and Yang, 1999), we ended up using the
first lag and the third lag of the time series.

Stone (1982) showed in the i.i.d. regression case that, if the mean function
m(-) is a sum of univariate functions, then the one-dimensional convergence
rate can be achieved for the estimation of m(-)’s component functions. Tools
for analysis of additive models in this context have been developed by Hastie
and Tibshirani (1990), including the BRUTO algorithm for nonparametric
modelling which Chen and Tsay (1993a, 1993b) applied to autoregressive time
series. The ‘integration method’ (but not the term marginal integration) was
introduced by Auestad and Tjestheim (1991) and further explored by Tjestheim
and Austad (1994) for the precise analysis, previously unavailable, of additive
model estimators. It provides closed form bias and various expressions of the
one-dimensional function estimator. The term marginal integration was
introduced by Linton and Nielsen (1995), who worked in the i.i.d. regression
setting. Marginal integration has recently been employed in the autoregression
setting by Masry and Tjestheim (1995a, 1995b) and in the i.i.d. regression
setting by Linton and Hirdle (1996) and Severance-Lossin and Sperlich (1995).
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The idea of the integration method is quite straightforward: in the regression
setting for instance, if the mean function m(x, x5, ..., x;) is a sum of
univariate functions, say

d
m(xy, X2, - .., Xg) = C + Z mgp(xg) (1.3)
B=1
then
mg(xg) = Jm(xl, X2, ooy Xa) AF (X1, .. X, .y Xg) — C
where F(xp, ..., xAﬁ, ..., Xg) is the joint distribution function of all the variables

X1, ..., Xq with the Bth X removed, and C is an additive constant. Hence each
component function mg is identified from m(xi, x2, ..., x4) through a simple
integration procedure. Linton and Nielsen (1995) introduced the idea of applying
integration estimation to multiplicative structures in dimension 2; in this paper
we extend the integration formula to multiplicative volatility functions of any
dimension.

To estimate the parameters in the CHARN model, we have to estimate the
conditional mean function m(-) and the conditional variance or volatility
function ov(-) at the same time. The flexibility of our CHARN model is
important in a number of economic applications, e.g. the prediction of financial
time series, where the volatility function often plays an even more important
role than the mean function. It is therefore beneficial to obtain the joint
estimation of both m(-) and v(-) for model (1.2). The volatility function v(-)
measures the scale and is always positive; therefore it seems more appropriate
to model its changes multiplicatively rather than additively, as in the EGARCH
model of Nelson (1991). In this paper we jointly estimate the additive (mean)
and the multiplicative (volatility) functions with the integration method.

We therefore assume that the mean function m(-) is additive while the
volatility function v(Y;_y, Yis, ..., Yig) =s(Yi_1, Yia, ..., Yi_g)* is multi-
plicative:

d
m(Yit, Yiogs oo Yiig) = cu+ Y mp(Yi_p) (14)
B=1
d
v(Yio1, Yias oo Yiea) = co | Jup(Yicp) (1.5)
B=1

where ¢,, and ¢, are constants, and {mﬁ(-)}‘ﬁ‘;1 and {Uﬂ(-)}gzl are sets of
unknown functions. Besides the better rate of convergence for the estimation of
{mﬂ(-)}gz1 and {U/;(-)}g:l as discussed above, these univariate functions also
allow us to quantify the impact of each lagged variable Y; s on the mean and
volatility more directly.

To formulate the identifiability conditions for the functions {m5(~)}gzl and

© Blackwell Publishers Ltd 1999



582 L. YANG, W. HARDLE AND J. P. NIELSEN

{U/;(~)}g:1, the process Y; has to converge to a stationary distribution. If we
denote by X; the vector (Y;_1, Y; 2, ..., Yi_4)', then {X;} is a d-dimensional
Markov process. Many authors, such as Tweedie (1975), Nummelin and
Tuominen (1982), Mokkadem (1987), Tjestheim (1990) and Diebolt and
Guégan (1993), have developed geometric ergodicity criteria for Markov
processes. Here we state some general assumptions.

(A1) The random variable &; has a density function p(-). This density p(-)
and the volatility function v(-) are strictly positive in a neighborhood of x.

. d .
—11Vi- )
(A2) There exists an r>0 such that for Y g |y g|>r, the functions m(-)
and s(-) satisfy

d
|m(yi—1, Yicas - yima)| S Ci{ 1+ Z |vipl
=1

d

Sty Vi oo Ve < Co [ 14D |31l
=1

with Cy + C2E|§1| < 1/d

These assumptions are standard in this context in order to prevent the
process from either dying our or exploding. Ango Nze (1992) proved the
following.

LEMMA 1.1. Under assumptions (A1) and (A2) the process {X;} is
geometrically ergodic, i.e. it is ergodic with stationary probability measure
7t(-) such that, for almost every Xx,

1P ([%) — 7() [ty = O(p")

for some 0 < p<1, where P"(:|x) is the probability measure of X, given
Xy =x and ||-||tv is the total variation distance.

This lemma ensures that the process {X;} is asymptotically stationary. We
denote by F(-) the stationary distribution function. For all 1 <o <d, we
denote by F,(-) the stationary distribution function of the ath variable, and F(-)
the stationary distribution function with the ath variable deleted. We allow
ourselves to use the short-hand notation Yz for Y; g Let xz denote the
deterministic version of Y;_g. We can now state the identifiability conditions.

(A3) Emp(Y) = | mp(xg) dFp(xg) = 0, for any Y that has distribution Fp(-)
and for all | < <d.

(A4) EH 1sﬁs¢z,ﬂ¢aUﬂ(Yﬂ) = H 1sﬂ<d,ﬁ7éavﬁ(xﬁ) df(f) =1 for any (Y1,
Y,, ..., Y;) that has distribution F(-), and for all 1 < a < d.
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Let x = (x1, X2, ..., X4)' € R? be a point where we will estimate the mean
and volatility functions. We define for every 1<a<d My(x,) =cmn+
my(xg), Va(xa) = cyUa(xy); then

d d
mx) = Mp(xp) = (d — Dew — v(x) =, "D ] V). (1.6)
p=1 =1

In what follows, we adopt the notation X; = (Y;_,, ¥;) to highlight a
particular direction of interest Y;_,, for all 1 < a < d, while Y, is the (d — 1)-
dimensional vector that consists of all the remaining Y; g, 1 < <d, 8 # a.
Assumptions (A3) and (A4) yield the following marginal integration formulae
for the unknown functions:

JMmﬂﬁ®=me=%+mm) (17)

ﬁmwmﬂm:nmwwmwa (1.8)

These show that the univariate functions {m/g(-)}g:1 and {Uﬂ(~)}g:1 are
identifiable from the functions m(-) and v(-) up to some constants. And similar
formulae exist for these constants as well:

1/(d-1)
Cm = Jm(x) dF(x) = E(Y) ¢, = EZJ I 7w dF)

a=1" 1sp=<d f#a

—

(1.9)

These are the basic equations that will be used later in our estimation procedure.

In Section 2, we present the estimators of {mﬁ(-)}gzl and {Uﬂ(')},g=1 and
study their asymptotic properties. In Section 3, we discuss the application of
the result to deutschmark/US dollar daily return data. In Section 4, proofs of
theorems are given. Inspection of the proofs in Section 4 shows that the result
of the present paper also holds (with obvious reformulation) for the multivariate
nonparametric regression model with heteroskedastic errors: Y; = m(X,
Xigy ooy Xia) + (X0, Xno, - .., Xig)&i, where &; are as in (1.2), (X, X, - - -
X4, Y;) are i.i.d., and the design points {X;;, Xp, ..., Xiz} are independent of

{&i}-

2. THE ESTIMATORS

The estimators given in this section are based on local polynomial regression,
first studied by Stone (1977) and Katkovnik (1979). The idea, as will be seen
below, is to estimate an unknown function locally by polynomials, whose
coefficients are calculated through kernel-weighted least squares (see also
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Tsybakov, 1986; Ruppert and Wand, 1994; Wand and Jones, 1995; Fan and
Gijbels, 1996).

Now we let p >0 be any odd integer which will be the degree of polynomial
used later. For any function K(-) we denote ||K ||§ = [ K*(u) du, while for a
kernel function K(-) we define K;(u) = K(u/h)/h, and u.(K)= fu’K(u) du.
We shall consider two kernel functions K(-) and L(-) that satisfy the following.

(A5) Both kernels K(-) and L(-) are bounded, symmetric, compactly
supported and Lipschitz continuous with [ K(u)du = [ L(u)du = 1; while
K(-) is positive, the kernel L(-) is of order ¢ >(d — 1)(p + 1)/2.

When estimating functions m(-) and v,(-) for a particular a, a multiplicative
kernel is used consisting of K for the ath variable and L for all other variables.
We assume the following about the functions involved in the estimation.

(A6) The functions mg(-) and v,(-) have bounded Lipschitz continuous
(p + Dth derivatives for all 1 < a <d.

(A7) The stationary distribution function F(-) has a density ¢(-). The
function ¢(-) together with the densities ¢,(-) of F,(-) and ¢(-) of F(:) are
uniformly bounded away from zero and infinity and have bounded Lipschitz
continuous (p + 1)th derivatives, for all 1 < a < d.

Lastly, we assume the following for two bandwidths, g for the kernel L, &
for the kernel K.

(A8) Bandwidths g and % satisfy g% !'/h?> — oo, nhg*“=V/In?(n) — oo,
g?/hP™! — 0 and h = hon=!/CP+3):

Note that assumption (A8) requires that L(-) have the order given in (AS5). In
particular, if we use local linear regression, i.e. p = 1, then the order of L(-) is
qg>d—1.
We can define the integration estimator for M,(x,) as
R R n
M) = [ 9 4P = (1= d 171D i T
I=d
where 7n(xy, X) is an estimate of m(-) at (xq, X) and F(X) is the empirical
cumulative distribution function. The estimator M,(x,) is thus based on the
sample version of Equation (1.7). The estimator for ¢, is simply the sample
mean of the Y; according to (1.9):
tn=EX)=(n—d+1)"" )
j=d
where E is the empirical mean of Y. These estimators are then used to obtain
estimators for m(x,) and m(x):
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fa(Xe) = Mo(xq) — Em

d d
(X) = Cw+ Y tg(xg) = Mp(xp) — (d — D).
p=1 p=1

We now define 7n(x,, Y;) as follows. For all /=d, d+1,...,n and 1 =0,
..o p let

Z ={(Yiea — %) Yn-arnyx(ps1)

W, = diag{m Ky(Yieq — Xa)Lo(Y; — 7l)}izd
where we denote
a 0 ... 0
a 0
diag(a) = :
0 0 ai
for any vector
aj
a= e R*,
aj

Also write
Y = (Y)a<i=n Y? = (le')dSiSn

and let e) be a (p + 1) vector of zeros whose (4 4 1)th element is 1. Then
(xq, Y1) = eg(Z" W2y 2T WY

which is the usual local polynomial estimator of m(-) at (x,, Y;) of order p in
the ath direction and order 0 in all other directions. Our estimator M(x,) is
therefore

Mo(xa) = (n—d+ 1) eg(Z'Wizy ' 2" Wiy,
I=d

Note that
E(Y2|X;) = m*(x;) + v(X)).

Thus a similar estimator for V,(x,) based on Equation (1.8) is defined as

Vala) = (n=d + 1)y {eg(ZTWi2)" ' ZTWiY? — in(xa, Y1)’}
I=d
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and that of ¢, is based on (1.9):
1/(d-1)

U—dz JHZ:H Vp(Yjop)

Jj=d 1sf<d p#a
We then obtain estimators for v,(x,) and v(x) as the following:

Ua(Xe) = f/a(xa)&ljl

d d
0(x) = & [ [ 0pCep) = &, D T V).
p=1 p=1
Our first theorem gives the estimation result of the mean functions.

THEOREM 1. Under assumptions (A1)—(48), as n — oo, for any a

() P { M o (x0) — Mu(ha) — BT ()} = N0, 62, (xa)} @.1)
where
_Mp+1(K ) m(PHD
bralii) =" L2 m ) ()
and

) = 1K 1B 2 w00
while for any o # B, as n — oo we have
cov[(nh) P {My(xe) = Ma(xa)}, (nh)' P {Mp(p) — Mp(xp)}] — 0. (2.2)
Furthermore, as n — oo
n'2(em — cm) = N{0, 02 (x)}

for some implicitly defined constant 0 The asymptotics of (nh)"/ g (xq) —
mq(x,)} are the same as those of the (nh)l/z{M (xg) — My(xq)}, while

(nh)" 2 {in(x) — m(x) — h"*1b,(x)} = N{0, 07,(x)} (2.3)
where
d
bu(x) =Y buna(a)
a=1
and
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d
0% (xX) =Y 070,(x).
a=1

The second theorem is about the estimation of the volatility functions.

THEOREM 2. Under assumptions (A1)—(A8), as n — oo, for any o

()" 2 {Vo(xa) = Valxa) — B bya(xa)} = N{0, 03,(xa)} (24

where
K*
Bya(x) = “(;%(1;,) (7P () + 2mP ) () M ()}
- szm(xa, Wym(xa, WB(w) dw
and

(Xa> WP (W) dw.

v(mav + 4m?)
Oha(Xa) = IIK?)‘I%JT

Also, as n — oo
cov[(nh) *{ V() = Va(xa) s (nh) P M o(x0) — Ma(x4)}]
= 2B 22 00 o = ) 25)
while for any a # B we have
cov[(nh){Va(xa) = Va(xa) b, () /{V(xp) — V(xp)}] — 0
cov[(nh)'*{Va(xa) = Va(xa)}s (nh)' P{Mp(x) — Mp(xp)}] — 0. (2.6)
Furthermore
n'2(e, — co — beh?™) 2 N{0, 02)
for some implicitly defined constant o2, and

Pe = G - Ded- 2zjl<ﬂ;ﬁ #{ 11 VV(J/y)}buﬁ(yﬂ)(P(J’)dy-

Isy<dy#o.p

For any a
(nh)l/z{l}a(xa) — Vg(xg) — hp+1bua(xa)} 2’ N{O, Uia(xa)} 2.7)

where
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1
bua(xa) = C_U {bVa(xa) - bcva(xa)}

and
1
Gzz)a(xa) = ga%/a(xa)
while
(nh) /2 {D(x) — v(x) — WP by(x)} = N(O, 02(x)}
where
d
bVﬁ(xﬁ) —1
by(x) = PP (d - Ve b,
(x) = () ,; Vi @7 D
and

20 = P Vﬁ(();ﬁ))
p=1

The next theorem summarizes all the previous results together in the form of
joint asymptotic normality for all estimators.

THEOREM 3. Under assumptions (Al)—(AS8), denote by B(x) the vector-
valued function

{bmi (1), ba(2), - s ba(ia)s bu(X), bor(x1), Do (32), - - s bua(xa), bo(x), 0, n'2b 3T
and by X(x) the following matrix:

[0 2 2 2w O0pa 04x) ]
2y 2p 23 2 0 0
231 23 233 234 O0gxi Ogx
2y 2Zp 2 2 0 0
01><d 0 01><d 0 02 0

cm

[0ixa 0 01xqg O 0 02

cv

where
S = diag{o},,)}eey  Zn =05,
3 = diag{o2,(x)}e_,  Zus=03(x)

d
. C X,
S =35 = {05, =a=a  Zi3=33 = dlag{M}
a=1

Cy
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T
crva(xs) U(x cra(xg
2142211:{V() ()} ZB:%:{VU}
I<as=d

Cy Va(xa) Cv I1<a<d

s, 3T cra(Xa) U(X) Sy =" =462 (x, u(x) '
24 2 Za:l Co Va(xa) 34 s Oua(X)Va(xa) l<a<d

Then, as n — 00

mi(xy) — my(xy)
my(x2) — ma(x2)

ma(Xq) - ma(xq)
m(x) — m(x)

D1(x)) — v1(x D
(nh)!/2 % ﬁizx;;—uigxg — BRI = N{O0aiapx@aiap )}

Va(xq) — Va(x4)
0(x) — v(x)
(1/RY2)(&m — cm)
(1/h'3) @y — cv)

We comment here that, although Theorem 3 is obtained for a local
polynomial of degree p, where p is an odd integer, the same result holds for
p even, in particular for p =0, i.e. the Nadaraya—Watson estimator. We
choose to have p odd here because it does not involve the derivatives of the
design density in the bias and variance expressions, and thus is ‘design-
adaptive’.

3. AN APPLICATION

To illustrate our method with an example, we study the daily returns of the
deutschmark/US dollar exchange rates from 2 January 1980 to 26 May 1986, a
total of 1603 observations. The data are plotted in Figure 1.

We estimate the conditional mean and volatility functions of this series at
lags 1 and 3. The choice of these two lags is based on the findings of
Tschernig and Yang (1999), who have developed a nonparametric final
prediction error criterion for determining significant lagged variables. For the
estimation, we use subjectively selected bandwidths 4 = 0.0062, g = 0.0074,
and the Nadaraya—Watson estimators. We find that, except for some boundary
effects, the mean functions mpg(-) are very close to zero. The estimated
volatility function 0g(-) depicted in Figures 2 and 3, however, provides some
fresh insights. Both the computation and graphics are done in XploRe (see
Hardle et al., 1995).
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DEM/USD*E-2

T T T T
6] 5 10 15
DEM/USD*E-2

FIGURE 1. The daily returns of the deutschmark/US dollar (DEM/USD) exchange rates.

10

-15 -10 -5 0 5 10 15
Y

FIGURE 2. Volatility function 0;(-) (thick) and its quadratic fit (thin).
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' 1 L It

10

FIGURE 3. Volatility function 05(-) (thick) and its quadratic fit (thin).

Figures 2 and 3 show that the lagged variables impact the volatility function
asymmetrically as both 01(-) and 03(-) are quite skewed, especially D3(-); we
can see this by comparing 0;(-) and 03(-) with their ordinary least squares
quadratic fits which are the thin lines in the figures. Some kind of
nonparametric testing would be needed to check the significance of these
observed features.

Our observations about 0;(-) and 03(-) have added weight to what some other
studies had also suggested: that the basic GARCH model is perhaps
inappropriate for the process we have here. Our analysis has gone a step
further in nonparametric estimation of times series as the significant lagged
variables are first identified by a nonparametric criterion (see Tschernig and
Yang (1999) for details). This example of identifying significant lags and
measuring their impacts points to a new comprehensive nonparametric approach
to time series analysis.

4. PROOFS

Theorems 1 through 3 are proved in this section by the marginal integration
technique as in Severance-Lossin and Sperlich (1995). We make use of the
following geometric mixing results.

LemMA 4.1. (DavyDov, 1973). Under assumptions (A1) and (A2) and if,
further, X4 is distributed with the stationary distribution 7(-), then the process
{X:} is geometrically strongly mixing with the mixing coefficients satisfying
a(n) < copy for some co>0 and 0<po<lI.
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By arguments which are very similar to those used by Hirdle et al. (1998),
the above mixing lemma entails that the sample mean of any bounded
continuous function of the observations ¥; converges in both probability and
mean to the stationary population mean. The situation here is slightly more
complicated than in that paper as we now have to average functions of two
variables Y; and Y,, one at a time. Nevertheless, the difference is more formal
than substantial. We therefore neither state nor prove any such results here, but
use them to derive the various formulae of asymptotic biases and variances as
these are the new contributions of this paper.

The proof of the next lemma is standard and omitted. It employs the strong
mixing condition of Lemma 1.1 and Lemma 4.1.

LEMMA 4.2. Let

1
D=Z'wWz)y ' ————H's'H .
¢(xa, Y1)
- Inn 2
oo 20 =0 00 i) “

uniformly in x, and Y, where H = diag(h’l)og,lgp.

Proofs of asymptotic normality in this section are based on the central limit
theorem of Liptser and Shirjaev (1980). Conditions for applying this theorem
will not be verified here as they are all standard. Set S =
{ [ u*""K(u) du}o<s,i<p, which contains all the moments of S up to order 2p.
Denote S™! = (sy)o=s..<, and define

)4
K@) =) siu'K(u). (4.2)
t=0

This sz(-) is called the Ath-equivalent kernel. It has moments

0 q=<p,q#4i
Ju"Kjf(u)du: 1 qg=2 4.3)
A, g=p+1
and K (-) would yield the bias rates of n2?/GP*D for local polynomial

estimation (see Wand and Jones, 1995).
To prove Theorem 1, we begin by observing the following simple equation:

0 0+#2

1 0= 4.4)

e(Z"WiZ) ' Z'WiZe, = {

Thus
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Mo(xa) = Mo(xa) = (n—d + D) " eg(Z" W2y 2" Wiy
I=d

—(n—d+ 1) e (Z'Wiz)y " 2" WiZeoM of(xa)
I=d

—(n—d+1) ZZ’" (%) N ZTWZ) 2V WiZe,

=(m—d+ 1) el(Z"W) ' Z"W{Y — My(x,)}
I=d

—(n—d+1) sz ! (xa) (2 WiZ) 2T W Ze,.

Now assumption (A3) combined with the strong mixing properties of our process
implies that for every f=1,2,...,d, B # «,

" 1
(n—d+ 17" mp(Yip) =0, <nl/2>
I=d

and thus by (4.4) we also have (using the mixing properties of the process, see
Lemma 1.1, Lemma 4.1 and Lemma 4.2)

" 1
(n—d+ 1) el(Z"WZ) ' 2T Wi Zeymy(Y,_g) = O (—>
; 0 B B P\ 12
So we have

Ma(xa) — My (xq)

n

=(n—d+1)1Ze€(zTWzZ)IZTW1{Y— > mﬂ(Ylﬁ)—Ma(xa)}

I=d |<f=<dp+a

—(n—d+1) ZZ (x“) es(Z"wiz) ' 2w Ze, + O, ( 11/2>

=(n—d+ 1" e (Z'Wz) Z'W,
I=d

)4 )
% {Y B Z mav('xa) Ze, — Z mﬂ(Yl—ﬂ) — Ma(xa)}

v=1 ’ I<p=d. p#a

or
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Ma(xa) - Ma(xa)

=(n—d+ )" e (Z"Wz)"' Z'W,

{ e im(V)(xa) 3 mﬁ(Yl—ﬁ)}~ “5)

v= Isp=<d fp#a
Note that the Ath element of

P mW(x,
z" W,{ Y—cn—> “V(' “) Ze, - > mp(Yip)

v=0 1=p=<d f#a

is

(n—d+ 17" (Yia = %) Ki(Yja = Xa) Le(V; = 7))

j=d
)4 m(v)(x )
—Cm — Z “ (Yj a xa)v - Z mﬂ(Yl—ﬁ)
v=0 1<f<d.f#a
=L+ + 13
in which
n
Liy=m-d+1)"! Z Lt
i=d
where

Lijn = (Yjoq — X" Ki(Y g — X)Lo(Y; — T7)

% { ma( - i m(V)(.xa)( _ xa)v} (4.6)

v=0

Lia= Y, (n=d+1)"Y Lo
=

1=<f=d f+#a

where

Lugjia = (Yjoa = Xa) Kn(Y o — ¥) Le(Y; = Y){mp(Y;_p) — mg(Y1_p)}  (4.7)

and

Liz=n—d+1)7" > Liys (4.8)
j=d
where
Lijs = (Yjea — %) Ki(Yi—a — %) Le(Y; — Y)s(X)E;- (4.9)
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LEMMA 4.3. As n — oo,
E(Lanjua L) = pm 0 EHA=EDOG /g™
uniformly, for A=0, ..., pand I}, L, j1, p=4d, ..., n.
E(Lupyjia Lingojpn) = pmnh = EH=2D0(n [ hg™)
uniformly, for =0, ..., pand I}, I, j1, p=d,...,nand 1 < <d.
E(Li,310),3) = pminh=Lli=rDo(p?t [ pgd)
uniformly, for =0, ..., pand Iy, b, j1, p=4d, ..., n.

PrROOF. We only show this for the first case
E(Li, jy 3 i 3) = pmnh =B HA =D

X J(wa — X, K (W = %) Ly(W — Y)u(w)p(w) dw{1 + o(1)}

where we have used Lemma 1.1. By a change of variable w, = x, + hug,
w=1Y + gu,

E(Lji31in3) = (hg {1 +o(1)}

X J(hua)MK2(ua)L2(ﬁ)u(xa + hug, Y + g)p(xy + hig, Y+ gli)du. =

Now

W Inn 2 W42 ., In?n
O<nhgd1> [Op{h""(nhgdl)l/zH =0p nhgd1 +h n2 h2 g2d=D)
h* h? In”
- Wop <gd1 + nth(d1)>

th
=)

by using assumption (A8). Employing Lemma 4.2 and Lemma 4.3 now gives

p n
Z(n —d+ 1! Zeg
=0 =d
1
X {(ZT Wiz ————H'ST'H! }3/1(1/11,1 + L + 1513)
(p(xa, Yl)
R R S O L1 o a1y = o (P DICPHY)
= ; Op ()12 = 0p ()12 = 0p( ) = op(n ).
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If we only have to consider the diagonal terms, then this fact is easily recognized
(this is when we can ignore the correlation of the 7/ terms with the rest). The
correlation can be taken care of, however, by writing the /;; ; as sums (see above),
squaring the expression and conditioning on the ‘/ components’. The exponential
decay of the correlations in Lemma 4.2 and Lemma 4.3 ensures that the order of
magnitude is the same as if only the diagonal terms were considered.

PrROOF OF THEOREM 1. Making the aforementioned substitution, we have in
particular

Ma(xa) — My(xq) — Op(hp+1)

n

=n—d+ 1)y ——elH'ST'H 1 ZTWw,
= ¢(xa, Y1) ‘
2 m(xy)
X {Y — Cy — Z aV! “ Ze, — Z m[g(Ylfﬁ)
v=0 1sp=d.f#a

which, by using (4.6), (4.7) and the definition (4.2), is equal to

n 1 n _ —
(}’l —d + 1)71 Zm(n —d + 1)71 ZK(T;,(Y]—OL - xa)Lg(Y/ B Yl)
I=d as j=d

!

P ()
X lma(x,a) Sy My gy

v=0

+ > AmpYip) = mp(Yip)} + S(Xj)ff']
1<sf<d,f#a

K(Th(ija - xa)_

== 7 S o) B e — gt

v!

X lma(Yj_a) B ACO

v=0

+ Y Amp(Yip) — mp(Yyp— gwp)} + S(Xj)gj] :
1<p<d f#a

And because L has order ¢, so the above is equal to
Kop(Yja — Xa) _

J— 71 . _.
(n—d+1) Jz;{l—i—op(l)} oo T) (Y,

V=

)4 )
x { My )= 3D s(X,)&j} +0,(gh. (4.10)
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Thus we have shown that

Mo(xa) — Mo(xy) = B+ V + 0 (hFT1)

in which
B=(n—d+1)" Zw—( Y;)
Jj=d ( Xas )
P )
{ma(Y, 9= oy }
=0 !
and

y = a0 K e )

j=d (p(xaa j)

Now (by using the mixing properties of our process)

B= {1+ oy} | KAE )

x{ma(Yja) imV(xa)(Y] a_xa)v}(p(z w)dz dw.

v=0
After substituting z = x, + hu, B becomes

B={1 +op(1>}j (0( ))—( W)

L1
X { me(Xq + hu) — Z "] m(av)(xa)(hu)”}qo(xa + hu, w) du dw
y=0 ""

which, by using the moment properties of the equivalent kernel as in (4.3),
equals

{1+ op(1>}”(”“+( 1)0,) M D @) = bua(xa)h? + 0y(h?*)
@.11)

where b,,(x,) is as given in Theorem 1. Meanwhile, V' has mean zero and its
variance is

(p(x(t s W)

2
(n—d+ I)IJ{M_(W)S(Z w)} ¢o(z, w)dz dw{l + o(1)}

=n'n'o? (x){l +o(1)}. (4.12)
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Equations (4.11) and (4.12) together establish (2.1). Equation (2.2) is derived by
standard techniques as in Linton and Hérdle (1996). Equation (2.3) and all
the remaining formulas of Theorem 1 then follow directly from (2.1) and (2.2)
as the various (nh)'/2{M(x,) — My(x,)} are all asymptotically uncorrelated
and so the variance of (nh)'/?{i(x) — m(x)} is simply the sum of all their
variances, and the mean of (nk)'/?{i(x) — m(x)} is simply the sum of all their
means. ]

PROOF OF THEOREM 2. We prove similar results for Veo(xa):

Val¥a) = Valxa) = (n—d + 1) {eg(Z"wiz) ' 2" wiy?
I=d

- f”(xaa ?1)2} - Va(xa)

n
=(n—d+ 17" e (Z"Wizy "W,
I=d

X {Y2 — M(Xg, 71)2 - Va(xa)}
=(n—d+ 1" e (Z"Wizy' Z'W,
I=d
X AY? = m(xa, V1) + m(xa, Y1) — in(xa, Y1)* = Va(xa)}-
Now note that by assumption (A4)
O 1
(m—d+ 17" JJosrip =1 +op<l/2)
J=d pa &
and also that
Y3 = m(X;) +22m(X)s(X)E; + v(X)(E — 1) + v(X)).
So similar to (4.10) we have
Va(xa) = Va(xa) = T + Ta + T3 + Ty + Ts + op(h7*)

where
Ty=(n—d+1)"Y {mx, Y1) = in(xa, Y1)’}
I=d

—(y_ N th(yj—a_xa)f—, N2 32
Th=(mn—d+1) ; o0 T (Y ){m(X;)* — m(xq, Y)*}
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n *
7y = —d+ 1y S Rl = XD gy [y - o T osrp)
= e 1)) B+a

i da ) S KT ) SO,
To=(n—d+1) ,Zd oo T PODmSXE)

=K Y — Xa)
Ts=(n—d+1)"" ) =Wt _“CG7 ) {uX)E - D}
5 =(n ) 2" G 1) (Y ){v(X)(E; — D}

We derive the asymptotics of each of these terms. Recall that Theorem 1
provides the following:

(nh)' 2 {in(x) — m(x) — h?*'b,(x)} LA N{0, o2 (%)}

Therefore

T = _(n —d+ 1)71 zn:z{m(xaa ?l) - ﬁ’l(xaa 71)}m(xa, 7l) + op(hp+l)
I=d

= —2E{m(xg, Yn) — i(xq, Y0)}m(xq, ¥y) + 0p(hPHh)

- _hp+1J2bm(xa, W)m(xq, WYP(w) dw + op(h?"). (4.13)

Next we see, by using the substitution z; = x, + hu, that

k
Bon® ZX) G000 Gz, WP = s W}z, w) dz b
(P(xa s W)

Ty = {1+ op(l)}J
B /"p+1(K(>)k)

= TSN JZmSIPH)(é‘a)m(xa, w)p(w) dw + Op(th)

24 p1(KY)
N (;1 1‘)?*mé”*‘>(xa>M(xa)+op(hp+‘> (4.14)

K(Th(z — Xa) _

T;={1+ op(l)}J prE— PV u(2) V(W) — Va(x) V(W) } (2, w) dz dw

_ ﬂpH(K();()

RRTESN JVt(lprl)(xa)Va(w)E(w) dw + Op(h”H)

K*
N #(IZ:L(_I)O_!) Vi 0) + op(h” ). (4.15)
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To calculate the terms 7, and 75, note first that they both have mean zero
and are uncorrelated, so it is only necessary to calculate their variances and the
sum.

Kz)kh(Yn—a - xa)a(Yn)
@(Xa> Yn)

2
var(Ty) = (n — d + 1)1E{ 2m(Xd)s(Xd)} {1+o0(1)}

2
—n—d+ 1>1j{wzm(z, Ws(z, w)@(w)}

X @(z, w)dz dw{l + o(1)}

1 4m?v

—%IK?)‘I%JT(% W)@ (w) dw{l +o(1)} (4.16)

and similarly

my 02

1
var(7s) = K | 4 G g0 el 140}, (417)

Putting together Equations (4.13) through (4.17) gives the asymptotic
expressions of Va(xy) in Theorem 2. To get the formula for cpu(x) in (2.5),
note that the variance term V in the proof of Theorem 1 is uncorrelated to all
the 7; except T4, and the asymptotic correlation is (plus some higher order
terms)

K(Th(Ydfa - xa)a(Yd)
(p(xaa Yd)

(n—d+ 1)—1E{ 2m(Xd)s(Xd)}

N LA
O (xXas Ya)

which can be verified to be exactly (1/nh)cyq(x){1 +o0(1)} by the same
technique as that used above. Equation (2.6) is easy to prove as (2.2) of
Theorem 1.

To get the asymptotic properties of ¢,, we use the above results on ¥,(x) and
the mixing properties of our process to get
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ey —cf dzn_dHZ I 7p—c

j=d 1<p=d f+a

d n—d+1]dl<ﬁ<dﬂ¢a
X A{Vp(Y;p)+ Vp(Yp) = Vp(Y; p)} — co !

dzn_d+1z H Ve(Yjp) —cy !

J=d 1sf<d p#a

dzn—d+lz > { I1 Vy(Ym)}

J=d \=p=d pa | 1=y=dy+ap

X AVp(Y;_p) — Vp(Y;p)}

I NS { I Vyw,-y)}

Jj=d 1sf<dp#a | Isysdy#ap

1
X {Vp(Yj-p) = Vs(Y;-p)} + Op ( 1/2>

=81+ S+ 83+ op(hPT

where

j=d 1<f I<sy<dy#ap

d n
Z n— d +1 2 { 11 Vy(YJV)}bvﬂ(Yjﬂ)th

j=d 1<f<d pa | 1<y<dy#ap

Ky, (Y

Oh( k=B — J ﬁ)_(Yk){2m(Xk)S(Xk)§k}
@(Yj-p, V)

SF%?( ar+1)ZZ 2. { 11 VV(Y”)}
l
i

ar+1)2Z D { 11 Vy(YH)}

Jj=d 1sf<dp#a | Isysdy#ap

d (p(Y/—ﬁa Yk)

" l Ko, (Yip— Y, ﬁ)*(Yk){U(Xk)(Ek - 1)}]
i
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These three terms can be written as (again using the mixing properties)

d
ZJ Z { H Vy(yy)} bus(yp)p(y) dy + Oy ( 11/2>
a=1" 1<f<dpf#a

Isy<dy#a.p

p+1

and
2m(X)s(Xi)&x 1
Sz—ZW dZ > II 7ow
k—d a=1 1<p<d.p#a Isy<d,y#a,f

w KorlYip — Y8 5 )0y dy{1 + 0p(1)}

o(yg, Yi)
2m(X)s(Xp)ér 1
_ Vy(»y)
Z n—d + 1 dz] 1<ﬁ§d:ﬂ7éaj{lsysl;[7?éaﬁ Y }
« Ko PV = hu P dudy (o
P

(p(Yk—,B - hu9 7/{)

O, 2m(X)s(X € 1
_;(n_d+1)(ﬂ(yk)dz —f=dfta J{ H Vy(yy)}

I<y<d,y#a,f

X P(Y)p(Yi—p, ) d3{1 + 0p(1)}

from which it is clear that S, satisfies a central limit theorem with n'/? rate of
convergence, which is also the case for S3. Thus

d—1 h?t 4
SRS DS
a=1" 1=sf<d f+#a

1/(d—1)

Isy<d,y#a.p

1
{ H Vy(Yy)}buﬂ(yﬁ)w(y) dy+—57

where Z > N(0, 02) for some o?; applying the Taylor expansion gives the
result on ¢, and the rest of Theorem 2 follows directly. ]

PROOF OF THEOREM 3. We simply put together the results of the previous
two theorems. Note that the joint normality follows from the fact that the
stochastic part of all the estimates is based on the &; and the Si — 1. Thus, any
linear combinations of the estimates also have similar forms to those treated in
Theorem 1. |
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