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Abstract Stratified sampling is one of themost important survey sampling approaches
and is widely used in practice. In this paper, we consider the estimation of the distribu-
tion function of a finite population in stratified sampling by the empirical distribution
function (EDF) and kernel distribution estimator (KDE), respectively. Under gen-
eral conditions, the rescaled estimation error processes are shown to converge to a
weighted sum of transformed Brownian bridges. Moreover, simultaneous confidence
bands (SCBs) are constructed for the population distribution function based on EDF
and KDE. Simulation experiments and illustrative data example show that the cover-
age frequencies of the proposed SCBs under the optimal and proportional allocations
are close to the nominal confidence levels.
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1 Introduction

Survey sampling is one of themost important branches of statistics. Its classic research
contents are to design appropriate sampling methods to obtain some units from the
finite population, and to make inference about the population using the sampled obser-
vations, such as the population total, population mean, and population quantiles; see
Cochran (1977) and Lohr (2009). Therefore, one particular task is to estimate the
cumulative distribution function (CDF) of the finite population and make correspond-
ing inferences.

There are many approaches in the current literature for estimating the population
distribution function under various conditions; see, for instance, Chambers and Dun-
stan (1986),Wang andDorfman (1996), Chen andWu (2002), Frey (2009), andO’Neill
and Stern (2012) . Most of these existing works focus on studying the consistency and
asymptotic properties at any fixed point of the proposed distribution estimator. How-
ever, this is often unsatisfactory as investigators may be interested in making statistical
inferences on the unknown distribution function or testing whether the population dis-
tribution function is significantly different from a known distribution, for which a
simultaneous confidence band (SCB) is desirable.

SCB is a powerful and appropriate inference tool for an entire unknown curve or
function, which is a direct analogous concept of a confidence interval, regarded as a
collection of confidence intervals over the whole range of function. For instance, the
earlier work of Bickel and Rosenblatt (1973) is about SCB for a probability density
function. The constructions of SCB for nonparametric regression function can be found
in Härdle (1989), Xia (1998), Wang and Yang (2009). Recent theoretical development
on SCB has appeared in various contexts, see Degras (2011), Zhu et al. (2012), Cao
et al. (2012), Ma et al. (2012), Zheng et al. (2014), Gu et al. (2014), Song et al. (2014),
and Cao et al. (2016) for functional data analysis; Song and Yang (2009) and Cai
and Yang (2015) for a conditional variance function; Wang et al. (2013) about smooth
SCB for cumulative distribution function in the independent and identically distributed
(i.i.d.) settings based on continuous kernel distribution estimator (KDE); Gu and Yang
(2015) for a single-index link function; Shao and Yang (2012) and Wang et al. (2014)
for time series analysis; and Cardot and Josserand (2011) and Cardot et al. (2013) for
SCB for functional data mean curve under survey sampling.

In the context of SCB for the finite population distribution function, Frey (2009)
constructed the nonsmooth Kolmogorov–Smirnov type of SCB for the population dis-
tribution function under simple random sampling by a recursive algorithm to compute
exact coverage frequency of SCB designed for the case when the sample size and
population size are both small. More recently, Wang et al. (2016) considered large
sample asymptotics based SCB for the CDF of the finite population also under simple
random sampling.

However, in practice, stratified sampling is a standard technique in survey method-
ology commonly employed to increase efficiency over simple random sampling.
Consider, for instance, a farm acres dataset in Example 3.2 of Lohr (2009), which
consists of four census regions of the United States–Northeast, North Central, South,
andWest. Figure 8 depicts the distribution functions and histograms of the four regions,
clearly showing significant variation among the four, as is also seen in Figure 3.1 in
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SCB for stratified population distribution

Lohr (2009). Thus, stratified sampling is highly recommended in such a case. Yet,
there do not exist any results on SCB for the CDF of the finite population under strat-
ified sampling in previous works. If one naively treats a stratified sample as a simple
random sample (SRS) and applies the method proposed by Wang et al. (2016) to con-
struct SCBs for a stratified population distribution, the performance of the SCBs is not
satisfying for a stratified sample as expected. In particular, the empirical coverage fre-
quencies are much different from the nominal confidence level. Some detailed results
are shown in Tables 3, 4, 5 and 6 and explained in Sects. 4 and 5. Hence, in this paper,
we consider estimators of the finite population distribution function under stratified
sampling based on the nonsmooth empirical distribution function (EDF) defined in
(4) below and the smooth kernel distribution estimator (KDE) in (6), and develop
their corresponding SCBs to provide a powerful tool to make statistical inferences for
stratified population distribution function.

The rest of the paper is organized as follows. Section 2 provides themain theoretical
results as well as technical conditions needed in our theoretical development. Section
3 describes the actual procedures to implement the SCBs. Simulation studies are given
in Sect. 4, and illustrative data example in Sect. 5. Some technical proofs are given in
the Appendix.

2 Main results

In stratified sampling, a finite population π of N units is first divided into several
nonoverlapping subpopulations called strata. Once the strata have been determined,
a simple random sample is drawn from each stratum with the drawings being made
independently across the different strata. The total sample size is denoted by n.

In sample surveys, usually the population size N is large but finite. Thus, the classic
framework of asymptotics in statistics may not directly apply for a finite population.
On the other hand, in sampling theory the finite population π may be viewed as a
sample of size N drawn from a superpopulation which has a continuous distribu-
tion F(x). This is the setting we assume in this work. Specifically, in the spirit of
Rosén (1964) for finite population asymptotics, we assume that there is a sequence
of populations {πk}∞k=1 as i.i.d. random samples of sizes Nk (Nk → ∞ as k → ∞)
generated from a superpopulation with a mixture continuous distribution function
F(x) = ∑S

s=1 WsFs(x), where each Fs(x) is a continuous distribution function and
Ws , s = 1, 2, . . . , S, are weights satisfying Ws ∈ (0, 1),

∑S
s=1 Ws = 1. Each πk

can be viewed as a “post-stratified” population in the sense that it can be divided
into S strata π1k, π2k, . . . , πSk of N1k, N2k, . . . , NSk units respectively according to
the superpopulation components Fs(x), s = 1, 2, . . . , S. It is clear that πsk can be
regarded as an i.i.d. random sample from Fs(x) conditional on Nsk . Then stratified
random sampling is applied to the population πk . Notice that in this framework, the
stratum sizes Nsk, s = 1, 2, . . . , S, are treated as observed random variables due to the
randomness of drawingπk from the superpopulation and Nk = N1k+N2k+· · ·+NSk .
Let Wsk = Nsk N

−1
k be the stratum weights of population πk , which are easily seen

to satisfy that Wsk converges to Ws almost surely, and of course in probability, as
k → ∞.
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Denote ysi,k , 1 ≤ s ≤ S, 1 ≤ i ≤ Nsk as the characteristic of interest for the i th

unit in the sth stratum of πk . Then one has the population πk = {
ysi,k

}S,Nsk
s=1,i=1 and the

subpopulations (strata) πsk = {
ysi,k

}Nsk
i=1, s = 1, . . . , S. Mathematically, the discrete

CDF of the population πk can be defined as

FNk (x) = N−1
k

S∑

s=1

Nsk∑

i=1

I (ysi,k ≤ x) =
S∑

s=1

Wsk FNsk (x), (1)

where FNsk (x) is the CDF of πsk given by

FNsk (x) = N−1
sk

Nsk∑

i=1

I (ysi,k ≤ x), s = 1, . . . , S. (2)

By the law of large numbers, we have FNk (x) →p F(x) and FNsk (x) →p Fs(x) as
k → ∞, ∀x ∈ R, where→p means convergence in probability. Our goal is to estimate
the population distribution FNk (x) as well as the superpopulation distribution F(x)
with their corresponding SCBs in stratified sampling.

For each k ≥ 1, denote
{
Ys1,k, . . . ,Ysnsk ,k

}
as an SRS drawn from the sth stratum

of population πk with sample size nsk (nsk ≤ Nsk), s = 1, . . . , S. Hence, the total
sample size is nk = n1k + n2k + · · · + nSk . Define Fnsk (x) and Fnk (x) as the EDFs
of sth stratum πsk and population πk , which are both random functions due to the
randomness of sampling, given by

Fnsk (x) = n−1
sk

nsk∑

i=1

I (Ysi,k ≤ x), s = 1, . . . , S, (3)

Fnk (x) =
S∑

s=1

Wsk Fnsk (x), x ∈ R. (4)

In addition,we adoptKDE, an integral formof a distribution estimator that appeared
in Reiss (1981), Liu and Yang (2008), Wang et al. (2013) for i.i.d. and stationary
sequences, to each stratum CDF FNsk and the population CDF FNk . They are respec-
tively defined as

F̂sk(x) =
∫ x

−∞
n−1
sk

nsk∑

i=1

Khs

(
u − Ysi,k

)
du, s = 1, . . . , S, x ∈ R, (5)

F̂k(x) =
S∑

s=1

Wsk F̂sk(x), x ∈ R (6)

in which K is a kernel function rescaled as Khs (u) = K (u/hs) /hs with bandwidth
hs = hnsk > 0.
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For convenience, denote the maximal deviation between any two distribution func-
tions F1 and F2 as

M (F1, F2) = ‖F1 − F2‖∞ = supx∈R |F1(x) − F2(x)| , (7)

and for nonnegative integer p and γ ∈ (0, 1], the collection of functions whose pth
derivatives satisfy Hölder conditions of order γ as

C (p,γ ) (R) =
{

g : R → R

∣
∣
∣
∣
∣
‖g‖p,γ = sup

x1 	=x2,x1,x2∈R

∣
∣g(p) (x1) − g(p) (x2)

∣
∣

|x1 − x2|γ < +∞
}

.

We assume some general technical conditions as follows:

(C1) ∀s ∈ {1, . . . , S}, min (nsk, Nsk − nsk) →p ∞, as k → ∞.
(C2) There exist constants ws ∈ (0, 1) and C ∈ [0, 1), such that as k → ∞,

wsk = nsk/nk →p ws and nk/Nk → C.
(C3) There exist an integer p ≥ 0 and γ ∈ (1/2, 1] such that Fs ∈ C (p,γ ) (R), and

Fs(x) is uniformly continuous over x ∈ R.
(C4) The bandwidth hs = hnsk > 0 satisfies λskh

p+γ
nsk →p 0, as k → ∞, in which

λsk =
(
n−1
sk − N−1

sk

)−1/2
.

(C5) The kernel K is a continuous and symmetric function, supported on [−1, 1],
and is a q th order kernel for some even integer q > p + γ , i.e., its moments
μr (K ) = ∫

vr K (v) dv satisfy μ0 (K ) ≡ 1, μq (K ) 	= 0, μr (K ) ≡ 0 for any
integer r ∈ (0, q).

Remark 1 In many convergence statements of the conditions, we use convergence
in probability because we treat the population as an i.i.d. random sample from the
superpopulation. In this framework, both nsk and Nsk are treated as observed random
variables. In the rest of the paper, as a convention we may drop “in probability” for
brevity if there is no confusion when discussing convergence in probability.

Since in stratified sampling an SRS is independently drawn from each stratum, we
first state the following Theorem 1which is essentially Theorems 1 and 2 inWang et al.
(2016). It is a finite population version of Donsker’s Theorem and the equivalence of
EDF and KDE under simple random sampling. Its proof can be found in Wang et al.
(2016).

Theorem 1 Under Condition (C1), as k → ∞, for the sth stratum of population πk ,
FNsk (x), Fnsk (x) and F̂sk(x) respectively given in (2), (3) and (5) satisfy

λsk
{
Fnsk (x) − FNsk (x)

} d→ Bs (Fs(x)) , s = 1, . . . , S, (8)

where λsk =
(
n−1
sk − N−1

sk

)−1/2 = n1/2sk (1 − nsk/Nsk)
−1/2 is a finite population

corrected scale factor and Bs (·) represents the Brownian bridge for the sth stratum.
In addition, under Conditions (C1)–(C5),
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λskM
(
F̂sk, Fnsk

)
= λsk supx∈R

∣
∣
∣F̂sk(x) − Fnsk (x)

∣
∣
∣ = op (1) , s = 1, . . . , S. (9)

The above theorem can be extended to finite stratified sampling. To properly for-
mulate the extension, we first provide a simple lemma.

Lemma 1 Under Condition (C2), ∀s ∈ {1, . . . , S}, w−1
s − CW−1

s ≥ 0, and there
exists at least one s ∈ {1, . . . , S} such that w−1

s − CW−1
s > 0.

The above lemma ensures that all
(
w−1
s − CW−1

s

)
/ (1 − C) in the next theorem

are nonnegative with at least one of them being positive. The proofs of Lemma 1,
Theorem 2 and others are given in the Appendix.

Theorem 2 Under Conditions (C1), (C2), as k → ∞, FNk (x) and Fnk (x) given in
(1), (4) satisfy

λk
{
Fnk (x) − FNk (x)

} d→ B∗(x),

in which λk =
(
n−1
k − N−1

k

)−1/2
and

B∗(x) =
S∑

s=1

Ws

√(
w−1
s − CW−1

s

)
/ (1 − C)Bs {Fs(x)} (10)

where the transformed Brownian bridges Bs {Fs(x)}, s = 1, . . . , S, are independent
of each other.

Corollary 1 Under Conditions (C1)–(C2), as k → ∞, one has

P
[
λkM

(
Fnk , FNk

) ≤ t
] → D∗ (t) = P

[
maxx∈R

∣
∣B∗(x)

∣
∣ ≤ t

]
, t ≥ 0,

where B∗ (x) is as defined in (10), and D∗ (t) represents the extreme value distribution
of B∗ (x). Hence, for α ∈ (0, 1), an asymptotic 100 (1 − α)% SCB based on Fnk for
the finite population CDF FNk (x) is

[
max

{
Fnk (x) − λ−1

k D∗
1−α, 0

}
,min

{
Fnk (x) + λ−1

k D∗
1−α, 1

}]
, x ∈ R, (11)

where D∗
1−α = (D∗)−1 (1 − α) is the 100 (1 − α)th percentile of D∗ with (D∗)−1

being the inverse function of D∗.

Theorem 3 extends the asymptotic property of the finite population CDF FNk (x)
to the superpopulation CDF F(x).

Theorem 3 Under Conditions (C1)–(C2) and if nk/Nk → C ≡ 0 as k → ∞, one
has λkM(FNk , F) = op (1). Hence,

P
[
λkM(Fnk , F) ≤ t

] → D∗ (t) , t ∈ R.

Furthermore, for α ∈ (0, 1), an asymptotic 100 (1 − α)% SCB based on Fnk for the
superpopulation CDF F(x) is constructed as (11).
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Theorem 4 below shows that nonsmooth Fnk and smooth F̂k are asymptotically
uniformly equivalent. By Slutsky’s Theorem, F̂k automatically inherits the asymptotic
properties of Fnk . Therefore, one can successfully construct smooth SCBs for finite
population CDF FNk (x) and superpopulation CDF F(x) based on F̂k .

Theorem 4 Under Conditions (C1)–(C5), as k → ∞, Fnk (x) and F̂k(x) given in (4),

(6) satisfy λkM
(
F̂k, Fnk

)
= op (1). Consequently,

P

[
λkM(F̂k, FNk ) ≤ t

]
→ D∗ (t) , t ∈ R.

Furthermore, under nk/Nk → C ≡ 0 in Condition (C2),

P

[
λkM(F̂k, F) ≤ t

]
→ D∗ (t) , t ∈ R.

Hence, an asymptotic 100 (1 − α)% smooth SCBs based on F̂k for finite population
CDF FNk (x) and superpopulation CDF F(x) are constructed as

[
max

{
F̂k(x) − λ−1

k D∗
1−α, 0

}
,min

{
F̂k(x) + λ−1

k D∗
1−α, 1

}]
, x ∈ R. (12)

Remark 2 When S = 1, stratified sampling is reduced to simple random sampling
and the extreme value of B∗(x) in Theorem 2 follows the Kolmogorov distribution,

i.e., D∗ (t) = D (t) = 1 − 2
∞∑
j=1

(−1) j−1 exp
(−2 j2t2

)
, t > 0; D (t) = 0, t ≤ 0.

The critical value D∗
1−α = (D∗)−1 (1 − α) can be computed by a standard numerical

method.
When S > 1, however, the distribution of B∗(x) is not distribution-free, and D∗

1−α

can be obtained only by non-trivial Monte-Carlo methods. More details about the
implementation of the SCBs will be presented in the following Sect. 3.

3 Implementation

In this section, we outline a practical procedure to implement the construction of the
SCBs for finite population CDF FNk (x) and superpopulation CDF F(x) based on
estimators EDF Fnk (x) and KDE F̂k(x) given in ( 11) and (12), respectively.

The kernel function used in our proposed KDE F̂k(x) is the quartic kernel,
K (u) = 15

(
1 − u2

)2
I {|u| ≤ 1} /16, which satisfies Condition (C6) with q = 2. The

bandwidth for each stratum is taken to be hs1 = IQRs ×λ−2
sk , or hs2 = IQRs ×λ

−2/3
sk ,

s = 1, . . . , S, where IQRs stands for the Inter-Quartile Range of an SRS drawn from
the sth stratum, and hs1 automatically satisfies Condition (C5), while hs2 satisfies (C5)
if p + γ > 3/2, especially taking p = 1 since γ ∈ (1/2, 1].

The most important part of the procedure to construct the SCBs is to obtain the
critical values D∗

1−α = (D∗)−1 (1 − α), i.e., the 100 (1 − α)th percentiles of D∗.
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According to the stratified sample drawn from each stratum, it is easy to construct
the empirical CDF of each stratum Fnsk , s = 1, . . . , S, and then to generate the
transformed Brownian bridges Bsl

{
Fnsk (x)

}
, l = 1, . . . , L , where L is a preset large

integer, the default of which is set to be 1000 due to lengthy simulation time. One
takes the maximal absolute value over a equally divided values of x for each copy
of the weighted sum of Brownian bridges

∑S
s=1 λkWskλ

−1
sk Bsl

{
Fnsk (x)

}
(SCBs for

FNk ) or
∑S

s=1 Wskw
−1/2
sk Bsl

{
Fnsk (x)

}
(SCBs for F), and estimates D∗

1−α by the
empirical quantile of these maximum values. The above limiting method is based on
the limiting distribution stated in Theorems 2–4. In our implementation, a is taken to
be 401, which appears to be sufficient in this application; see more discussion on this
in the next section.

An alternative method for obtaining the critical values in finite sample cases is
the bootstrap technique. Suppose for each stratum, Nsk = tsknsk + rsk , 1 ≤ rsk ≤
nsk − 1, s = 1, . . . , S. Adopting the idea of McCarthy and Snowden (1985), one
replicates each sample elements tsk times, together with selecting rsk elements from
the sample without replacement to construct an artificial population, from which L
repeated stratified samples are drawnwithout replacement. For each stratifiedbootstrap
sample, the bootstrap EDF and KDE are computed. Then one takes the maximal
absolute value of the difference between each bootstrap EDF (KDE) and real sample
EDF (KDE), and then estimates the critical values for the SCB based on EDF (KDE)
using the proper quantiles of these maximum values.

For stratified random sampling, there are two common methods to allocate the
number of units to be drawn from each stratum. One is called proportional allocation
as nsk the number of sampled units in each stratum is proportional to Nsk the size of
the stratum, i.e., nsk = (nk/Nk) Nsk . The other is the Neyman allocation, a special
case of the optimal allocation in which the costs in the strata are assumed to be equal.
In this case, nsk is proportional to NskVsk , where V 2

sk is population variance in stratum
s. For the estimation of the population CDF,

V 2
sk =

∫
Nsk

Nsk − 1
FNsk (x)

{
1 − FNsk (x)

}
dx, s = 1, . . . , S,

where the integration is approximated by the sum over 401 equally spaced grid points
on the range of a pilot SRS drawn from stratum s and the unknown FNsk (x) may be
estimated by the corresponding pilot sample EDF.

4 Simulation study

In this section, we present some simulation results to show the finite-sample perfor-
mance of the proposed estimators and the corresponding SCBs.

In our simulation settings, we consider a population with four strata to match the
real data “agpop.dat” discussed in Sect. 5. These four strata are generated, respectively
from� (1.41, 0.66),� (1.45, 2.25),� (0.67, 2.98),� (0.76, 9.56), which are regarded
as four superpopulations following Gamma distribution � (υ, β) with the probability
density function (PDF):
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f (x) = 1

βυ� (υ)
xυ−1e−x/β, x > 0.

The parameters of the above four Gamma distributions are taken to be the rescaled
moment estimation based on agpop.dat.

The number of units for each stratum is taken to be N1k = 200, N2k = 1000,
N3k = 1400, N4k = 400, respectively, so that the total number of units in the entire
population is Nk = N1k + N2k + N3k + N4k = 3000, while the total sample size nk is
taken to 150, 300, 600, 900.Denotem, M as theminimumandmaximumof a stratified
random sample. We examine the global discrepancy between Fnk (x) and F̂k(x) under
the proportional and optimal allocations measured by the Integrated Squared Error
(ISE):

ISE(Fnk , FNk ) =
∫

{Fnk (x) − FNk (x)}2dx,

ISE(F̂k, FNk ) =
∫

{F̂k(x) − FNk (x)}2dx,

ISE(Fnk , F) =
∫

{Fnk (x) − F(x)}2dx,

ISE(F̂k, F) =
∫

{F̂k(x) − F(x)}2dx,

in which the integration is approximated by the sum over 401 equally spaced
grid points from m − (M − m) n−2

k to M . One then computes the Mean Inte-
grated Squared Error (MISE) as the average of ISE over 1000 replications. Under
the proportional and optimal allocations, Figs. 1, 2, 3 and 4 show respectively,
the boxplots of the random values ISE(F̂k, FNk ), ISE(F̂k, F) and the random
ratios ISE(F̂k, FNk )/ISE

(
Fnk , FNk

)
, ISE(F̂k, F)/ISE(Fnk , F). These plots indi-
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Fig. 1 Boxplots of ISE(F̂k , FNk ) with bandwidth hs1 under the optimal/proportional allocation, respec-
tively. a Optimal allocation. b Proportional allocation
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Fig. 2 Boxplots of ISE(F̂k , F)with bandwidth hs1 under the optimal/proportional allocation, respectively.
a Optimal allocation. b Proportional allocation
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Fig. 3 Boxplots of the ratio ISE(F̂k , FNk )/ISE(Fnk , FNk ) with bandwidth hs1 under the opti-
mal/proportional allocation, respectively. a Optimal allocation. b Proportional allocation

cate that for both allocations ISE(F̂k, FNk ) →p 0, ISE(F̂k, F) →p 0 and
ISE(F̂k, FNk )/ISE

(
Fnk , FNk

) →p 1, ISE(F̂k, F)/ISE(Fnk , F) →p 1. More-
over, Figs. 5 and 6 show that the differences of ISE between the two allo-
cations are not significant. Table 1 contains MISE(F̂k, FNk ), MISE(F̂k, F) and
the ratios MISE(F̂k, FNk )/MISE(Fnk , FNk ), MISE(F̂k, F)/MISE(Fnk , F), which
are compared under the two allocations. It shows that as nk increases, under
either the proportional or optimal allocation, MISE(F̂k, FNk ) goes to zero and
MISE(F̂k, FNk )/MISE(Fnk , FNk ) is smaller than (but close to) 1. MISE(F̂k, F) and
MISE(F̂k, F) /MISE(Fnk , F) behave similarly. All these findings are consistent with
the asymptotic properties. In addition, although MISE(F̂k, FNk ) and MISE(F̂k, F)
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Fig. 4 Boxplots of the ratio ISE(F̂k , F)/ISE(Fnk , F) with bandwidth hs1 under the optimal/proportional
allocation respectively. a Optimal allocation. b Proportional allocation
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Fig. 5 Boxplots of the ratio a ISEopt(Fnk , FNk )/ISEprop(Fnk , FNk ) and b ISEopt(F̂k , FNk )/

ISEprop(F̂k , FNk ) with bandwidth hs1

under the optimal allocation are smaller than that under the proportional allocation,
the differences are small.

Next, we compare the SCBs constructed by F̂k , Fnk with the confidence levels
1−α = 0.99, 0.95, 0.9, 0.8. Under the proportional allocation and optimal allocation,
respectively, Tables 3 and 4 report the coverage frequencies over 1000 replications
that the true curve was covered by SCBs at the 401 equally spaced grid points from
m − (M − m) n−2

k to M . For visualization of actual function estimates, Fig. 7 depicts

curves of the true population CDF FNk , EDF Fnk , KDE F̂k taking bandwidth hs1,
together with corresponding asymptotic 95% nonsmooth and smooth SCBs at nk =
300. Other settings yielded similar results, but are not included to save space. Our
main findings are summarized as follows:
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Fig. 6 Boxplots of the ratio a ISEopt(Fnk , F)/ISEprop(Fnk , F) and b ISEopt(F̂k , F)/ISEprop(F̂k , F)

with bandwidth hs1

Table 1 ComparingMISEs of F̂k (with bandwidth hs1) and Fnk under the optimal/proportional allocation,
respectively

nk

150 300 600 900

MISEopt(F̂k , FNk ) 0.0089 0.0041 0.0018 0.0011

MISEprop(F̂k , FNk ) 0.0094 0.0047 0.0020 0.0012

MISEopt(F̂k , FNk )/MISEprop(F̂k , FNk ) 0.9489 0.8588 0.9011 0.8987

MISEopt(F̂k , FNk )/MISEopt(Fnk , FNk ) 0.9888 0.9948 0.9975 0.9992

MISEprop(F̂k , FNk )/MISEprop(Fnk , FNk ) 0.9882 0.9945 0.9977 0.9991

MISEopt(F̂k , F) 0.0096 0.0046 0.0024 0.0016

MISEprop(F̂k , F) 0.0100 0.0051 0.0026 0.0018

MISEopt(F̂k , F)/MISEprop(F̂k , F) 0.9627 0.8913 0.9298 0.9122

MISEopt(F̂k , F)/MISEopt(Fnk , F) 0.9888 0.9944 0.9973 0.9988

MISEprop(F̂k , F)/MISEprop(Fnk , F) 0.9878 0.9939 0.9974 0.9988

(1) From Tables 3, 4 and Fig. 7, one can see that there are no significant differences
between the two allocations regarding the performance of SCBs. The coverage
frequencies of SCBs for population CDF FNk based on EDF Fnk and KDF F̂k
with bandwidth hs1 are close to the nominal levels. Meanwhile, three curves of
FNk , Fnk , F̂k are very close in Fig. 7. All these results reveal that the smooth KDE
F̂k is asymptotically as efficient as the nonsmooth EDF Fnk , and automatically
inherits the asymptotic properties of Fnk , which is consistent with Theorem 4.

(2) It is not surprising that the SCBs based on F̂k with bandwidth hs2 do not work
well. This is because in our simulation settings the above four Gamma distri-
bution � (1.41, 0.66) , � (1.45, 2.25), � (0.67, 2.98), � (0.76, 9.56) as Fs, s =
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Fig. 7 Plots of 95% SCBs for the population CDF FNk with bandwidth hs1 at nk = 300 by opti-
mal/proportional allocation, respectively. a Optimal allocation. b Proportional allocation

Table 2 Comparisons of the computing time (minutes) of SCBs’ coverage frequencies given the confidence
levels 1 − α = 0.99, 0.95, 0.9, 0.8 based on the bootstrap/limiting method with bandwidth hs1 over 1000
replications under the proportional allocation

Computing time nk = 150 nk = 300 nk = 600 nk = 900

Limiting 6.89 7.58 8.35 8.83

Bootstrap 215.30 350.17 596.49 868.00

1, 2, 3, 4, do not satisfy p+ γ > 3/2. To examine this, we ran further simulation
studies by choosing� (2, 0.5),� (3, 1) as Fs, s = 1, 2,which satisfy p+γ > 3/2,
and the results with N1k = 2000, N2k = 1000 under the proportional allocation
are shown in Table 5. However, bandwidth hs2 still does not perform as well as
hs1. Since bandwidth hs2 satisfies Condition (C5) only when Fs has smoothness
order p + γ > 3/2 and is also sensitive to the simulation results, we recommend
using bandwidth hs1 in practice.

(3) Tables 3, 4 and 5 show that the coverage frequencies of SCBs for FNk based on Fnk
and F̂k with bandwidth hs1 by the bootstrap method are generally as good as that
of SCBs by the limiting method. But in Table 2, one can see that the computing
time for the bootstrap is much longer than that for the limiting method.

(4) With Nk fixed at 3000, the performance of the SCBs for F deteriorates as nk
increases from150 to 900, because the condition limk→∞ nk/Nk = 0 forTheorem
3 is increasingly violated.

(5) For comparisons, we use the same stratified samples but incorrectly treat them as
if they were simple random samples and apply the method developed in Wang
et al. (2016) to construct SCBs for FNk and F . As shown in Tables 3, 4 and 5,
the coverage frequencies of SCBs for simple random sampling are much lower
than the nominal levels under the optimal allocation, while are generally higher
than the nominal levels under the proportional allocation. In one word, the SCBs
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SCB for stratified population distribution

for simple random sampling do not perform well for a stratified sample. This is a
strong motivation for us to propose the new method in this paper.

A reviewer pointed out that the number of grid points can be sensitive to the results.
There are two issues associated with this point: (1) how the number, a, of grid points
affects the simulated critical values and (2) how the number of grid points, b, affects
the computation of the coverage frequencies. To investigate these two questions. we
conducted some further simulations in the case of proportional allocation with nk =
150. The results with the replication number of weighted sum of Brownian bridges
L = 20,000 show that the differences of the critical values using a = 401 and a = 801
grid points are negligibly small at all significance levels under consideration, and thus
the differences of coverage frequencies between using a = 401 and a = 801 are
also negligibly small. Moreover, the coverage frequencies between using b = 401
and b = 801 points are in fact identical at all significance levels. We believe that one
major contributing factor to this phenomenon is the smooth and monotone increasing
features of the distribution function. In any event, using a = b = 401 appears to be
sufficient in our simulation studies.

In conclusion, we recommend the smooth SCB based on KDE F̂k with bandwidth
hs1 for population CDF FNk . One can use the limiting method to obtain the critical
values for SCBs to save computing time. The nonsmooth SCB based on EDF Fnk is a
good choice for validation purposes.

5 Illustrative data example

As an illustration, we apply the proposed method to the USA Census of Agriculture
dataset introduced in the Introduction which is described and analyzed in Lohr (2009)
(see Example 3.2). The population level data file is called agpop.dat. We focus on the
1992 information on acreage devoted to farms for each of the Nk = 3078 counties and
county-equivalents in the United States as our population. According to the census
regions, the population is divided into four strata: Northeast, North Central, South, and
West. After omitting the 19 missing data, the numbers of each stratum are Nk1 = 213,
Nk2 = 1052 , Nk3 = 1376, Nk4 = 418. Figure 8 shows the four discrete population
distribution functions FNsk (x), s = 1, . . . , 4, and their smoothed relative frequency
plots. These relative frequency plots appear to be from different Gamma distributions.
Hence it is useful to stratify the overall population.

Table 6 shows the coverage frequencies of the SCBs for the agpop distribution
FNk (x) under the proportional allocation over 1000 replications, including the smooth
SCB based on KDE F̂k with bandwidth hs1 and the nonsmooth SCB based on EDF
Fnk by the bootstrap and limiting methods, compared to SRS. In contrast, the coverage
frequencies of the smooth SCB by the limiting method approach the nominal levels,
while the SCBs for SRS are inaccurate as their coverage frequencies are much higher
than the nominal levels. Figure 9 depicts the true population CDF FNk , EDF Fnk ,
KDE F̂k with bandwidth hs1 and the corresponding asymptotic 95% nonsmooth and
smooth SCBs at sample size nk = 300 in one of the 1000 runs. One sees that not
only the curves of Fnk , F̂k fit the true population CDF FNk well, but also the 95%
nonsmooth and smooth SCBs both contain FNk . All these numerical and graphical
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Fig. 8 Plots of a empirical CDFs of each stratum and population, b smoothed relative frequencies for each
stratum in agpop.dat

Table 6 Coverage frequencies of the SCBs for agpop CDF FNk (x) with bandwidth hs1 based on 1000
replications under proportional allocation

nk SCB 1 − α

0.99 0.95 0.90 0.80

150 Bootstrap, nonsmooth 0.982 0.935 0.843 0.733

Bootstrap, smooth 0.980 0.934 0.859 0.744

Limiting, nonsmooth 0.984 0.952 0.876 0.777

Limiting, smooth 0.985 0.952 0.893 0.786

SRS, nonsmooth 1.000 0.990 0.976 0.925

SRS, smooth 1.000 0.990 0.977 0.931

300 Bootstrap, nonsmooth 0.980 0.935 0.870 0.752

Bootstrap, smooth 0.985 0.941 0.876 0.760

Limiting, nonsmooth 0.989 0.944 0.874 0.746

Limiting, smooth 0.991 0.950 0.881 0.755

SRS, nonsmooth 0.999 0.983 0.955 0.892

SRS, smooth 0.999 0.984 0.956 0.895

600 Bootstrap, nonsmooth 0.995 0.966 0.915 0.818

Bootstrap, smooth 0.996 0.964 0.909 0.819

Limiting, nonsmooth 0.988 0.953 0.903 0.819

Limiting, smooth 0.989 0.955 0.905 0.825

SRS, nonsmooth 0.996 0.989 0.963 0.902

SRS, smooth 0.996 0.989 0.962 0.902

900 Bootstrap, nonsmooth 0.994 0.968 0.915 0.785

Bootstrap, smooth 0.994 0.967 0.921 0.790

Limiting, nonsmooth 0.990 0.965 0.910 0.794

Limiting, smooth 0.990 0.964 0.916 0.793

SRS, nonsmooth 0.998 0.990 0.971 0.915

SRS, smooth 0.998 0.990 0.971 0.916
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Fig. 9 Plot of 95% SCBs for the “agpop” CDF with bandwidth hs1 at nk = 300 under proportional
allocation

results suggest that our proposed SCBs are robust tools for statistical inference on the
finite population distribution in stratified random sampling.

The R code used to produce the results in the simulations and example is available
on the website: https://github.com/gulijie2018/StratifiedSCB.

Appendix

In this Appendix, we use an = o (bn) to denote that limn→∞ an/bn = 0, and an =
O (bn) to denote that lim supn→∞ an/bn = c, where c is a constant. In addition,
we denote by op

(
Op

)
and oa.s. a sequence of random variables of order o (O) in

probability and almost surely, respectively, while ua.s. means oa.s. uniformly in the
domain.

In the following we will prove Lemma 1 and Theorems 2–4.

A.1 Proof of Lemma 1

Our framework given in Sect. 2 and Condition (C2) ensure that, for any s ∈ {1, . . . , S},

lim
k→∞ (Nsk/Nk) = Ws, lim

k→∞ (nsk/nk) = ws, lim
k→∞ (nk/Nk) = C.

Hence,

CW−1
s ws = lim

k→∞ (nk/Nk) (Nsk/Nk)
−1 (nsk/nk) = lim

k→∞ (nsk/Nsk) ≤ 1.
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Making use of the simple inequality

nk/Nk =
∑S

s=1 nsk
∑S

s=1 Nsk
≥ min

1≤s≤S
(nsk/Nsk)

and letting k → ∞, one obtains that

C = lim
k→∞ nk/Nk ≥ lim

k→∞ min
1≤s≤S

(nsk/Nsk) = min
1≤s≤S

lim
k→∞ (nsk/Nsk)

= min
1≤s≤S

CW−1
s ws,

since C < 1 according to Condition (C2), one obtains that min1≤s≤S CW−1
s ws < 1.

The Lemma 1 is proved. �


A.2 Proof of Theorem 2

For s = 1, . . . , S, combining (8) in Theorem 1 with Skorohod’s Representation The-
orem shown in Theorem 6.7 of Billingsley (1999), there exits a version B̃sk (·) of

Brownian bridge Bs (·) that satisfies B̃sk (Fs(x))
d→ Bs (Fs(x)) as k → ∞ such that

supx∈R
∣
∣
∣λsk

{
Fnsk (x) − FNsk (x)

} − B̃sk (Fs(x))
∣
∣
∣ → 0, a.s.,

which implies that

Fnsk (x) − FNsk (x) = λ−1
sk B̃sk (Fs(x)) + ua.s.

(
λ−1
sk

)
.

Recalling the definitions of FNk (x) and Fnk (x) given in (1) and (4), one has

λk
{
Fnk (x) − FNk (x)

} = λk

{
S∑

s=1

Wsk Fnsk (x) −
S∑

s=1

Wsk FNsk (x)

}

= λk

S∑

s=1

Wsk
{
Fnsk (x) − FNsk (x)

}

= λk

S∑

s=1

Wsk

{
λ−1
sk B̃sk (Fs(x)) + ua.s.

(
λ−1
sk

)}
.

According to Condition (C2), as k → ∞,

nsk
Nsk

= nsk
nk

· nk
Nk

· Nk

Nsk
→p wsCW−1

s ,
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and

λkWskλ
−1
sk = Nsk

Nk

√
nk
nsk

· 1 − nsk/Nsk

1 − nk/Nk
→p Ws

√

w−1
s

1 − wsCW−1
s

1 − C
. (A.1)

Hence,

λk
{
Fnk (x) − FNk (x)

} d→
S∑

s=1

Ws

√(
w−1
s − CW−1

s

)
/ (1 − C)Bs {Fs(x)} .

The proof of Theorem 2 is completed. �


A.3 Proof of Theorem 3

Note that λk N
−1/2
k =

(
n−1
k − N−1

k

)−1/2
N−1/2
k = (nk/Nk)

1/2 (1 − nk/Nk)
−1/2

→ 0 when nk/Nk → C ≡ 0 as k → ∞. Because of a sequence of populations
{πk}∞k=1 as i.i.d. random samples generated from F(x), Donsker’s Theorem entails

that N 1/2
k

{
FNk (x) − F(x)

} d→ B {F(x)}. Hence, as k → ∞,

λkM(FNk , F) = λkOp

(
N−1/2
k

)
= op (1) .

Then Theorem 3 follows by Theorem 2 and Slutsky’s Theorem. �


A.4 Proof of Theorem 4

According to the definitions of Fnk (x) and F̂k(x) given in (4) and (6), one has

λk

{
Fnk (x) − F̂k(x)

}
= λk

{
S∑

s=1

Wsk Fnsk (x) −
S∑

s=1

Wsk F̂sk(x)

}

.

Then (9) and (A.1) imply that

λkM(F̂k, FNk ) = λk supx∈R
∣
∣
∣F̂k(x) − Fnk (x)

∣
∣
∣

≤ λk

S∑

s=1

Wsk supx∈R
∣
∣
∣F̂sk(x) − Fnsk (x)

∣
∣
∣

= λk

S∑

s=1

Wskλ
−1
sk × op (1) = op (1) .

Applying Theorems 2 and 3 and Slutsky’s Theorem, Theorem 4 is proved. �
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