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A Smooth Simultaneous Confidence Corridor
for the Mean of Sparse Functional Data

Shuzhuan ZHENG, Lijian YANG, and Wolfgang K. HÄRDLE

Functional data analysis (FDA) has become an important area of statistics research in the recent decade, yet a smooth simultaneous confidence
corridor (SCC) does not exist in the literature for the mean function of sparse functional data. SCC is a powerful tool for making statistical
inference on an entire unknown function, nonetheless classic “Hungarian embedding” techniques for establishing asymptotic correctness
of SCC completely fail for sparse functional data. We propose a local linear SCC and a shoal of confidence intervals (SCI) for the mean
function of sparse functional data, and establish that it is asymptotically equivalent to the SCC of independent regression data, using new
results from Gaussian process extreme value theory. The SCC procedure is examined in simulations for its superior theoretical accuracy and
performance, and used to analyze growth curve data, confirming findings with quantified high significance levels. Supplementary materials
for this article are available online.

KEY WORDS: Double sum; Extreme value; Karhunen–Loève L2 representation; Local linear estimator; Strong approximation.

1. INTRODUCTION

Functional data analysis (FDA) has become an important
area of statistics research in the recent decade, see, for instance,
Cardot, Ferraty, and Sarda (2003) and Cai and Hall (2006).
One well-known application is growth curve analysis in biol-
ogy, medicine, and chemistry, see, for example, Müller (2009),
James, Hastie, and Sugar (2000), and Ferraty and Vieu (2006),
and references therein. Much of the existing work though is de-
voted to consistency of estimation and/or dimension reduction.
Results on statistical inference for the mean curve are rather
scarce although it is important for characterization of important
data features. To characterize global properties of the unknown
function of interest, a simultaneous confidence corridor (SCC),
or a shoal of confidence intervals (SCI), is the appropriate in-
struments.

An SCC is a collection of sliding random intervals placed
above each point of the data range, so that the scanned two-
dimensional random region in the shape of a corridor (or band)
contains an entire unknown curve (or function) with prede-
termined probability. An SCI, on the other hand, consists of
sliding random intervals containing each point of the unknown
curve with predetermined probability. Although the SCI is also
a two-dimensional random region as SCC, it does not contain
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the entire curve with a positive probability. Nonetheless, SCI is
widely used in the literature because it is usually straightforward
to compute and illustrates well the overall trend and shape of
the unknown curve, see Figure 6 of Xue and Yang (2006) and
Figure 1 of Wang and Yang (2007).

Decisions about the mean curve of functional data are critical,
for example, in ozone analysis, see Lucas and Diggle (1997) for
a longitudinal study on Sitka spruce. They pointed out that,
to assess the cumulative effect of ozone pollution on spruce,
an inference on the mean function of spruce growth during
the entire experiment rather than at the end of the growth is
required. This is one of the many motivations to develop a new
method to construct an SCC for the mean function of sparse
functional data, where the measurements are randomly located
with random repetitions.

To illustrate the use of SCC and SCI, consider the growth
curve data in the study of human skeletal health, consisting
of measurements Yij , the spinal bone mineral density (g/cm2),
for n = 132 subjects (nonblack females). The number of mea-
surements for the ith subject, Ni , varies randomly between 2
and 4 (sparsity), and Xij , the jth time point of measurement
for the ith subject (aged 8.8–26.2 yr), also varies randomly
for each subject. James, Hastie, and Sugar (2000) used boot-
strap confidence intervals to test the mean function of these
data at points of interest, for example, the growth peak at about
15 yr.

Figure 2(a) exhibits the scatterplot of the female spinal bone
density versus the age. Figure 2(b) depicts the SCCs and SCIs
of the population mean growth curve at the confidence level of
90%. Our SCIs are similar to those of James, Hastie, and Sugar
(2000) for pointwise inference, while our SCCs indicate that
the mean spinal bone density level increases with age, but the
bone growth is accelerated during early adolescence (9–15 yr),
whereas it reaches the plateau during late puberty (16–26 yr).

The SCC construction has been extensively studied in the lit-
erature. Neumann and Polzehl (1998), Kreiss and Neumann
(1998), and Claeskens and Van Keilegom (2003) developed
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bootstrap methods, Kerkyacharian, Nickl, and Picard (2012)
established a nonasymptotic SCC via concentration inequal-
ities, while another strand of literature including Bickel and
Rosenblatt (1973), Johnston (1982), Xia (1998), and Fan and
Zhang (2000) constructed the SCC by Gaussian strong approxi-
mation and extreme value theory, which though did not assume
that for family of curves one needs to take care of dependence
structures. By contrast, Wu and Zhao (2007) constructed a confi-
dence band for the nonstationary mean function, and Wang and
Yang (2007), and Song and Yang (2009) obtained the spline-
based analogy for the mean and variance functions. Nonpara-
metric time series with specific dependence structures were con-
sidered in Zhao and Wu (2008). For sparse functional data, Yao,
Müller, and Wang (2005a) constructed prediction bands for in-
dividual trajectories instead of confidence band for the mean
function, while Yao (2007) obtained an SCI for the mean and
covariance functions. More recently, asymptotic SCC based on
spline regression has been constructed for the mean function
of sparse functional data in Ma, Yang, and Carroll (2012), of
dense functional data in Cao, Yang, and Todem (2012), and for
mean function derivatives of dense functional data in Cao et al.
(2012).

The main difficulty in constructing SCCs for functional data
is that the observations within subject are dependent, thus the
“Hungarian embedding,” widely used in the existing literature to
construct nonparametric confidence bands (e.g., Johnston 1982;
Claeskens and Van Keilegom 2003), is no longer available. Ma,
Yang, and Carroll (2012) made use of partial sum strong approx-
imation to reduce the error process in estimating mean function
to a Gaussian sequence whose maximal deviation asymptotics
is obtained via Gaussian sequence extreme value theory. As the
only published work that rigorously establishes SCC for sparse
functional data, it suffers three serious flaws: it uses piecewise
constant spline and thus consists of discontinuous step func-
tions; it has width of order n−1/3 log n, significantly wider than
the typical order of n−2/5 log n for regression data, see, for ex-
ample, Xia (1998); its SCC is valid only for processes with finite
Karhunen–Loève L2 representation.

We propose to construct the SCC for the mean function of
sparse functional data via local linear smoothing, with more
appealing theoretical and computational properties. Our local
linear SCC has width of order n−2/5 log n instead of n−1/3 log n,
which is by no means insignificant. The local linear SCC and
the estimated mean curve are also smooth, rather than step func-
tions. Another major theoretical advance of the local linear SCC
is that it is based on infinite number of positive eigenvalues of
the covariance function, while Ma, Yang, and Carroll (2012) re-
quired the covariance function to have a finite number of positive
eigenvalues. Reflective of these theoretical advantages, the local
linear SCC clearly outperforms Ma, Yang, and Carroll (2012)
in simulation: it is much narrower and thus highlights much
more sharply the features of the mean function, with cover-
age frequencies much closer to nominal levels. The local linear
SCC thus allows for much more informative and reliable global
inference.

In addition to the superior inference features, proving asymp-
totics for the local linear SCC has added powerful technical tools
to the arsenal of nonparametric smoothing. Instead of the Nor-
mal Comparison Lemma (also known as the Slepian Lemma

in extreme value theory) for arrays of Gaussian random vari-
ables used in Ma, Yang, and Carroll (2012), we combine the
highly complicated Kac–Rice Formula for exceedance prob-
ability of Gaussian process (Cierco-Ayrolles, Croquette, and
Delmas 2003), and the Double Sum Method of Piterbarg (1996)
to show that the maximal deviation of the local linear estima-
tor for sparse functional mean converges to the same Gumbel
distribution as if the data were actually iid. We are unaware of
other works on SCC that employs these new techniques.

We organize our article as follows. In Section 2, we describe
the model and local linear smoothing methodology. In Section 3,
we present the asymptotic distribution of the maximal deviation
of the local linear estimator from the true mean function, which
is used to construct the SCC. Section 4 outlines the key steps
to implement the SCC. Section 5 illustrates the performance of
the SCC through extensive simulations followed by an empiri-
cal example in Section 7 which illustrates the SCC application
on growth curve data. Technical proofs are presented in the
Appendix.

2. MODEL AND METHODOLOGY

Longitudinal data have the form of {Xij , Yij }, 1 ≤ j ≤
Ni, 1 ≤ i ≤ n, in which Xij ∈ X = [a, b] is the jth random time
point for the ith subject and Yij is the response measured at Xij .
For the ith subject, the sample path is the noisy realization of a
continuous time stochastic process ξi(x), namely,

Yij = ξi(Xij ) + σ (Xij )εij , (2.1)

where the errors εij are iid with E εij = 0, E ε2
ij = 1, and

{ξi(x), x ∈ X } are iid copies of the process {ξ (x), x ∈ X } with
E

∫
X ξ 2(x)dx < +∞.
Denote by m(x) = Eξ (x) the regression curve and by

G(x, x ′) = cov{ξ (x), ξ (x ′)} the within-subject covariance func-
tion with the Karhunen–Loève L2 representation

ξi(x) = m(x) +
∞∑

k=1

ξikφk(x), (2.2)

one has the random coefficients {ξik}∞k=1 uncorrelated with mean
0 and variance 1. Here, φk(x) = √

λkψk(x), where {λk}∞k=1
and {ψk (x)}∞k=1 are respectively the eigenvalues and eigen-
functions of G(x, x ′) such that λ1 ≥ λ2 ≥ · · · ≥ 0 and {ψk}∞k=1
forms an orthonormal basis of L2(X ). Therefore, G(x, x ′) =∑∞

k=1 φk (x) φk(x ′) and
∫

G(x, x ′)φk(x ′)dx ′ = λkφk (x). Equa-
tions (2.1) and ( 2.2) can then be written as

Yij = m(Xij ) +
∞∑

k=1

ξikφk(Xij ) + σ (Xij )εij . (2.3)

For convenience, we denote the conditional variance of Yij given
Xij = x as

σ 2
Y (x) = G (x, x) + σ 2 (x) = var(Yij |Xij = x). (2.4)

We are interested in the sparse situation where the number
of measurements Ni within subject are iid copies of a positive
random integer N1, see Yao, Müller, and Wang (2005a, b) and
Yao (2007).

To introduce the estimator, denote by K a kernel func-
tion, h = hn > 0 a bandwidth and Kh(x) = h−1K(x/h).
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Let NT = ∑n
i=1 Ni be the total sample size and define

Y = (Yij )1≤j≤Ni,1≤i≤n the NT × 1 vector of responses. For
any x ∈ [0, 1], let X = X(x) = (1, Xij − x)1≤j≤Ni,1≤i≤n be
the design matrix for linear regression and W = W(x) =
N−1

T diag{Kh(X11 − x), . . . , Kh(XnNn
− x)} the kernel weight

diagonal matrix. Following Fan and Gijbels (1996), local linear
estimators of m(x) and m′(x) are

{m̂ (x) , m̂′ (x)}T = arg min
a,b

{Y − X(a, b)T}TW{Y − X(a, b)T}
= (XTWX)−1XTWY.

Consequently, with eT
0 = (1, 0), m̂(x) is written as

m̂ (x) = eT
0 (XTWX)−1XTWY, (2.5)

where the dispersion matrix

XTWX = diag(1, h)

(
sn,0 sn,1

sn,1 sn,2

)
diag (1, h) , (2.6)

and for any nonnegative integer l,

sn,l = sn,l(x) = N−1
T

∑
i,j

Kh(Xij − x){(Xij − x)/h}l . (2.7)

The local linear estimator m̂(x) is preferred over other kernel
type estimators because it uses local information of the data
and is minimax efficient. It is also adaptive to the design and
automatically corrects for boundary effects, see Fan and Gijbels
(1996) for details.

3. MAIN RESULTS

Without loss of generality, assume X = [0, 1] and consider
the assumptions:

(A1) The mean function m(x) ∈ C2[0, 1], that is, it is twice
continuously differentiable.

(A2) {Xij }∞,∞
i=1,j=1 are iid with probability density function

f (x). The functions f (x), σ (x) and φk ∈ C1[0, 1] with
f (x) ∈ [cf , Cf ], σ (x) ∈ [cσ , Cσ ] and all involved con-
stants are finite and positive. The eigenfunction series is
uniformly absolute convergent:

∑∞
k=1 ‖φk‖∞ < Cφ <

+∞.
(A3) The numbers of observations Ni, i = 1, 2, . . . are

iid random positive integers with ENr
1 ≤ r!cr

N , r =
2, 3, . . . for some constant cN > 0. (Ni)∞i=1,

(Xij )∞,∞
i=1,j=1, (ξik)∞,∞

i=1,k=1, (εij )∞,∞
i=1,j=1 are independent,

while {ξik}∞,∞
i=1,k=1 are iid N(0, 1).

(A4) There exists r > 5, such that E|ε11|r < ∞.
(A5) The bandwidth h = hn satisfies nh4 → ∞,

nh5 log n → 0 and h < 1/2.
(A6) The kernel function K(x) is a symmetric probability

density function supported on [−1, 1] and ∈ C3[−1, 1].

Assumptions (A1), (A2), (A5), and (A6) appear in many
papers on kernel smoothing. Except normality of the ξik’s,
Assumption (A3) has been used in Yao, Müller, and Wang
(2005a) and Paul and Peng (2009), while Assumption (A4) is
in Ma, Yang, and Carroll (2012). Note that despite the indepen-
dence Assumption (A3), temporal dependence in time course
data such as growth curve data is nicely captured by model
(2.3), as responses of the same subject i at different times are
correlated: cov(Yij , Yij ′ |Xij ,Xij ′ ) = G(Xij ,Xij ′ ), according to

Equation (2.3), the definition of the within-subject covariance
function G and Assumption (A3).

Assumptions (A2) and (A3) entail that E
∑∞

k=1 ‖φk‖∞|ξik| <

+∞, thus the random variable
∑∞

k=1 ‖φk‖∞|ξik| < +∞ almost
surely. Therefore over an event of probability measure 1 and x ∈
[0, 1],

∑∞
k=1 ξikφk(x) converges uniformly. Since {ξik}∞,∞

i=1,k=1
are iid N(0, 1), characteristic function argument then shows that
the limiting process

∑∞
k=1 ξikφk(x) is Gaussian for x ∈ [0, 1]

with mean 0 and covariance G(x, x ′) defined in (2.2). Our work
has gone much beyond the scope of Ma, Yang, and Carroll
(2012) which requires that κ < ∞.

The normality Assumption (A3) on {ξik}∞,∞
i=1,k=1 cannot be

relaxed also because each ξik appears in only Ni observa-
tions (Xij , Yij )Ni

j=1, see (2.3). The strong approximation result
in Lemma A.3 therefore does not apply since Ni is a random
variable with fixed distribution and does not go to infinity. In
contrast, Cao, Yang, and Todem (2012) and Cao et al. (2012) do
not require the ξik’s to be normal for dense functional data.

Next, for a nonnegative integer l and a continuous function
L(x), define:

μl,x(L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

−x/h

vlL (v) dv, x ∈ [0, h)

μl (L) =
∫ 1

−1
vlL (v) dv, x ∈ [h, 1 − h]∫ (1−x)/h

−1
vlL (v) dv, x ∈ (1 − h, 1]

(3.1)

Dx (L) = μ2,x (L) μ0,x (L) − μ2
1,x(L), (3.2)

and the equivalent kernel function, see Fan and Gijbels (1996):

K∗
x (u) = K (u) {μ2,x (K) − μ1,x (K) u}D−1

x (K),

K∗
x,h (u) = K∗

x (u/h) /h (3.3)

where D−1
x (K) exists by Lemma A.5. One may verify:

μ0,x(K∗
x ) = 1, μ1,x(K∗

x ) = 0, Dx (K) = μ2(K),

K∗
x (u) ≡ K(u),∀x ∈ [h, 1 − h] .

The asymptotic variance function is

σ 2
n (x)

def= ‖K∗
x ‖2

2σ
2
Y (x)

nhf (x) EN1

[
1 + E

(
N2

1 − N1
)

EN1

G (x, x) f (x) h

σ 2
Y (x) ‖K∗

x ‖2
2

+ μ1,x

(
K∗2

x

) {
σ 2

Y (x) f (x)
}′

h

‖K∗
x ‖2

2σ
2
Y (x) f (x)

]
. (3.4)

Define z1−α/2
def= 
−1(1 − α/2) and

Qh(α)
def= ah + a−1

h [log{
√

C (K)/ (2π )}
− log{− log

√
1 − α}] (3.5)

with ah = √−2 log h, C(K) = {∫ 1
−1 K ′(x)2dx}{∫ 1

−1 K2

(x)dx}−1.

Theorem 3.1. Under Assumptions (A1)–(A6), for any α ∈
(0, 1)

lim
n→∞ P{supx∈[0,1] |m̂ (x) − m (x)| /σn (x) ≤ Qh(α)} = 1 − α,

lim
n→∞ P{|m̂ (x) − m (x)| /σn (x) ≤ z1−α/2} = 1 − α,∀x ∈ [0, 1] ,

with σ 2
n (x) and Qh(α) given in (3.4) and (3.5).
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By Theorem 3.1, we construct the SCC and SCI for m(x) as
follows:

Corollary 3.1. Assume (A1)–(A6). A 100(1 − α)% SCC for
m(x) is

[m̂ (x) ± σn (x) Qh(α)]. (3.6)

A shoal of confidence intervals (SCI) is given by

[m̂ (x) ± σn (x) z1−α/2]. (3.7)

A simple approximation of σ 2
n (x) is given by

σ 2
n,IID (x) = ‖K∗

x ‖2
2σ

2
Y (x)

nhf (x) EN1
. (3.8)

Proposition 3.1. Given (A2), (A3), and (A6), then
supx∈[0,1] |σ−1

n (x)σn,IID(x) − 1| = O(h).

The above proposition allows one to use σ 2
n,IID(x) in place of

σ 2
n (x) for constructing SCC, which is equivalent to asymptoti-

cally neglecting the longitudinal dependence structure as a result
of sparsity. This phenomenon was previously noted in Wang,
Carroll, and Lin (2005), and Ma, Yang, and Carroll (2012), and
entails enormous conceptual and computational advantages: for
all practical purposes of constructing and using SCC, one can
treat a sparse functional data {Xij , Yij }, 1 ≤ j ≤ Ni, 1 ≤ i ≤ n

as if it were iid, and apply existing local linear method with-
out additional accommodation for dependence among repeated
measurements.

4. IMPLEMENTATION

Now we outline the construction of the SCC and SCI. Recall
the definition of m̂(x). The practical implementation of (3.6 ) and
(3.7) is via choosing the bandwidth and estimating EN1, f (x)
and σY (x), see Wang and Yang (2009), and references therein.

For datasets where the range of the Xij ’s is [0, 1], a simple
rule-of-thumb bandwidth satisfying Assumption (A5) is taken
as h = N

−1/5
T (log n)−1 which differs from mean square optimal

bandwidth selection but works quite well both in simulations and
real examples. In general, one has to first transform the Xij ’s so
its range becomes [0, 1] and then carry out local linear smooth-
ing with the above bandwidth. An “optimal bandwidth” has
never been established in the SCC context, because of the two
goals in SCC construction: coverage of the true curve as close as
possible to the nominal confidence level, and narrowness of the
band, are not quantifiable in a single measure to optimize, such
as the mean integrated squared error (MISE). Recent articles on
SCC for time series, such as Wu and Zhao (2007), and Zhao
and Wu (2008), have used similar undersmoothing bandwidths
as ours.

The quantity EN1 is estimated by NT/n and the estimator of
the density f (x) is

f̂ (x) = N−1
T

n∑
i=1

Ni∑
j=1

Kh(Xij − x).

The local linear estimator σ̂Y (x) = â1 results from

(̂a1, b̂1) = arg min
a1,b1

n∑
i=1

Ni∑
j=1

{̂
ε2
ij − a1 − b1(Xij − x)

}2
wij ,

where ε̂ij = Yij − m̂(Xij ), wij = N−1
T Kh(Xij − x). The con-

sistency of f̂ (x) and σ̂Y (x) is proved, for example, in Li and
Hsing (2010), Yao, Müller, and Wang (2005a). Slutsky’s theo-
rem entails that Theorem 3.1 still holds when σn(x) is replaced
by any consistent estimator σ̂n(x) satisfying that ‖σ̂n(x) −
σn(x)‖∞ = op(1/

√
log n) as n → ∞ . Therefore, the SCC

m̂(x) ± σ̂n, IID(x)Qh(α) and the SCI m̂(x) ± σ̂n,IID(x)z1−α/2

both have asymptotic confidence level 1 − α. It is worthwhile
to point out that m̂(x), σ̂n,IID(x), and Qh(α), in general, remain
stable if the bandwidths slightly vary.

5. MONTE CARLO STUDIES

In what follows, the finite sample performances of the SCCs in
this article and that from Ma, Yang, and Carroll (2012, hereafter
denoted by LL and MYC, respectively) are compared in terms
of uniform coverage rates, average maximal widths as well as
graphical visualization. The data are generated as

Yij = m(Xij ) +
κ∑

k=1

ξikφk(Xij ) + σεij . (5.1)

One considers first the case of κ = 2 and X ∼ U[0, 1], ξk ∼
N(0, 1), εij ∼ N(0, 1), m(x) = sin{2π (x − 1/2)}, φ1(x) =
−0.4 cos{π (x − 1/2)}, φ2(x) = 0.1 sin{π (x − 1/2)}, σ = 0.5
or 1, while Ni ∼ U{2, 3, 4}, n = 100, 200, 400, 800, and the
confidence level 1 − α = 0.95, 0.99.

For the case κ = ∞, let φk(x) = √
λkψk(x), where ψ1(x) =

1/
√

10, ψ2k(x) = sin(kπx)/
√

5, ψ2k+1(x) = cos(kπx)/
√

5, λk

= (1/5)2[k/2], k = 1, 2, . . . ,∞. The infinite series G(x, x ′) =∑∞
k=1 φk(x)φk(x ′) is well approximated by finite sum

G(x, x ′) = ∑κ
k=1 φk(x)φk(x ′) where κ = 2001, 3001, 4001,

5001, as the fraction of variance explained (FVE) criteria,
FVE2001 = ∑2001

k=1 λk/
∑∞

k=1 λk > 1 − 10−50, see Yao, Müller,
and Wang (2005b). Other simulation settings remain the same
as for κ = 2.

Figure 1 plots the data (n = 100, 200, κ = 2), the 95% LL
SCCs and MYC SCCs, respectively. Table 1 reports the uni-
form coverage rates of the SCCs from 500 replications, while
the average maximal widths of the SCCs are summarized in
Table 2. Clearly, the LL SCC outperforms the MYC SCC in all
aspects that matter: it is much narrower with coverage frequen-
cies much closer to nominal levels and highlights more sharply
the features of the mean function, thus it presents enhanced vi-
sual impression and has greater power for testing hypotheses.
These hold true regardless of sample size n, confidence level
1 − α, noise level σ , and the number κ of positive eigenvalues.
Results in Tables 1 and 2 are also evidence that the simple stan-
dard deviation σ̂n,IID(x) is a viable substitute of the theoretical
standard deviation σn(x) that accounts for the (asymptotically
negligible) dependence among repeated measurements, as all
SCCs have been computed using σ̂n,IID(x).

One referee has pointed out that confidence bands based on
extreme value theory typically have poor finite sample proper-
ties (in contrast to bootstrap methods), for which there is also
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Figure 1. Plots of the 95% SCCs (upper and lower lines), data (circle), true mean (thick median line), and mean estimator (thin median line)
when σ = 0.5: (a) n = 100, MYC; (b) n = 100, LL; (c) n = 200, MYC; (d) n = 200, LL.
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Table 1. Uniform coverage rates of SCCs from 500 replications: “∗∗”/“∗” if LL is better than/as good as MYC

σ = 0.5 σ = 1.0

κ = 2 n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

1 − α 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990
MYC 0.912 0.938 0.930 0.966 0.942 0.978 0.952 0.998 0.884 0.922 0.920 0.960 0.938 0.980 0.962 0.996
LL 0.946 0.974 0.954 0.974 0.956 0.988 0.952 0.992 0.906 0.966 0.924 0.966 0.944 0.984 0.954 0.996
Comparison ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗
“κ = ∞” κ ≈ 2001 κ ≈ 3001 κ ≈ 4001 κ ≈ 5001 κ ≈ 2001 κ ≈ 3001 κ ≈ 4001 κ ≈ 5001
1 − α 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990
MYC 0.896 0.958 0.926 0.968 0.964 0.980 0.944 0.986 0.892 0.932 0.922 0.950 0.938 0.980 0.958 0.996
LL 0.926 0.996 0.968 0.984 0.962 0.992 0.948 0.994 0.898 0.942 0.964 0.972 0.956 0.982 0.954 0.992
Comparison ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Table 2. Average maximal widths of the SCCs from 500 replications: “∗” if LL is narrower than MYC

σ = 0.5, κ = 2 σ = 1, κ = 2 σ = 0.5, κ = ∞ σ = 1, κ = ∞
n 100 200 400 800 100 200 400 800 100 200 400 800 100 200 400 800

1 − α = 0.95
MYC 2.69 2.09 1.62 1.30 3.38 2.64 2.22 1.82 2.24 1.88 1.57 1.12 2.82 2.33 2.04 1.64
LL 2.47 1.95 1.56 1.13 3.07 2.43 1.91 1.57 2.02 1.62 1.30 1.01 2.70 2.11 1.78 1.49
Comparison ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 − α = 0.99
MYC 3.10 2.41 2.02 1.59 3.91 3.03 2.41 1.98 2.35 2.07 1.69 1.21 3.38 2.68 2.15 1.70
LL 2.99 2.33 1.86 1.51 3.72 2.91 2.29 1.80 2.14 1.94 1.47 1.18 3.27 2.52 1.89 1.63
Comparison ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

theoretical support, see Hall (1993). The main reason finite sam-
ple behavior is so much better in our setting (Tables 1 and 2)
is the large total sample size, NT ≈ 3n = 300, 600, 1200, 2400.
For smaller sample size n = 20, 50, 80, the SCCs become much
wider and have much poorer coverage rates, see Table 3. We
note, however, that the growth curve data briefly discussed
in Section 1 have sample size n = 132 and total sample size
NT = 310 (all the Ni’s range between 2 and 4), which closely
resembles our examples with n ≥ 100. Another example, the
CD4 cell counts data in Yao, Müller, and Wang (2005b), has
n = 283 and Ni’s range between 1 and 14, with a median of

6. Therefore, the superior performance of our proposed SCC in
Tables 1 and 2 is to be expected in most commonly encountered
sparse functional data.

Following one referee’s suggestion, a MISE-relevant un-
dersmoothing bandwidth fulfilling Assumption (A5) h =
hopt(log n)−0.25 is also examined, where hopt is the MISE op-

timal bandwidth with order N
−1/5
T , see Fan and Gijbels (1996).

Table 4 reports the uniform coverage rates and the average maxi-
mal widths of the SCCs from 500 replications, showing coverage
rates comparable with those obtained in Table 1, but increased
width relative to Table 2.

Table 3. SCCs for sample size n = 20, 50, 80 from 500 replications

σ = 0.5 σ = 1.0

n = 20 n = 50 n = 80 n = 20 n = 50 n = 80

κ = 2
1 − α 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990
Coverage 0.838 0.904 0.882 0.922 0.908 0.942 0.788 0.878 0.872 0.926 0.882 0.938
Width 4.02 5.07 3.09 3.80 2.61 3.16 5.05 6.38 3.81 4.69 3.24 3.94

κ = ∞
1 − α 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990
Coverage 0.862 0.902 0.894 0.932 0.904 0.960 0.812 0.902 0.824 0.912 0.876 0.936
Width 3.33 4.21 2.54 3.63 2.48 3.09 4.46 5.64 3.46 4.25 3.07 3.51
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Figure 2. Plots of the nonblack female growth curve: (a) the data; (b) local linear estimator (median solid line), 90% SCC (thick lines) and
SCI (dotted lines); (c) 90% SCC (dashed lines), linear growth model (straight line) and monomolecular growth model (dotted curve); (d) 90%
SCC (dashed lines) and logistic growth model (dotted curve).
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Table 4. SCCs with bandwidth h = hopt (log n)−0.25 from 500 replications

σ = 0.5 σ = 1.0

n = 100 n = 200 n = 400 n = 800 n = 100 n = 200 n = 400 n = 800

κ = 2
1 − α 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990
Coverage 0.958 0.978 0.956 0.980 0.954 0.990 0.956 0.994 0.942 0.964 0.948 0.970 0.954 0.986 0.954 0.998
Width 3.52 4.16 2.75 3.15 2.17 2.56 1.55 1.93 4.17 4.95 3.24 3.73 2.57 2.78 1.79 2.10

κ = ∞
1 − α 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990 0.950 0.990
Coverage 0.932 0.998 0.968 0.986 0.966 0.994 0.952 0.998 0.936 0.944 0.964 0.976 0.956 0.986 0.952 0.992
Width 3.08 4.07 2.40 2.63 1.95 2.11 1.42 1.56 3.71 4.43 2.93 3.30 1.41 2.52 1.77 2.05

The above studies have convincingly demonstrated the supe-
rior numerical properties of the LL SCC, which will be used to
analyze real data in the next section.

6. APPLICATION

We now return to the growth curve data introduced in Section
1, consisting of measurements of spinal bone mineral density
at various ages for n = 132 nonblack females (total size NT =
310). They are a subset of the data studied in Bachrach et al.
(1999) and James, Hastie, and Sugar (2000), and it was claimed
in Bachrach et al. (1999) that the individuals were independently
surveyed from different biophysical and social environments.

As mentioned before, our estimate of the mean spinal bone
density curve increases with age, with highest growth rate dur-
ing early adolescence (9–15 yr) and peaks during late puberty
(16–26 yr), see, Figure 2(b). Although these visual impressions
seem to validate what is known in pediatrics, one referee cau-
tions that they are best tested with the aid of SCC. We have
carried out such testing as follows.

To test the hypotheses:

H0 : m (x) = m0 (x) versus

Ha : m (x) �= m0 (x) for some x ∈ [0, 1] (6.2)

for a given function m0(x), one applies the rule “Reject H0

if the curve {(x,m0(x)), x ∈ [0, 1]} is not covered entirely by
the asymptotic 100(1 − α)% SCC”, with asymptotic power α

under H0, 1 under Ha due to Theorem 3.1. Three candidate
monotone growth functions are tested: the “linear growth func-
tion” m0,1(x), the “monomolecular growth function” m0,2(x) (a:
growth size, b : shape and k: rate) and the “logistic growth func-
tion” m0,3(x) (a1: growth size, a2: shape, a3: rate and, similarly,
b1: growth size, b2: rate and b3: puberty effects):

m0,1 (x) = c + βx,

m0,2 (x) = a {1 − b exp (−kx)},
m0,3 (x) = a1/ {1 + a2 exp (−a3x)} (6.3)

+ b1/ {1 + exp (−b2 (x − b3))},
see Sluis et al. (2002), and references therein. Figure 2(c) over-
lays the 90% SCC and the functions m0,1(x) and m0,2(x) ob-
tained via nonlinear least squares regression, while Figure 2(d)
does the same for m0,3(x). Clearly, at the 10% significance level,
both m0,1(x) and m0,2(x) are rejected, while the logistic growth

model represented by m0,3(x) is accepted. Our finding recon-
firms the selected model in Sluis et al. (2002).

An R algorithm scbsfda.R of our method has been provided
on www.quantlet.org.

7. DISCUSSION

In this article, a local linear SCC is proposed for the mean
function of sparse functional data. In terms of theoretical proper-
ties such as smoothness and narrowness, as well as computation
ease and conceptual appeal, it is comparable to existing meth-
ods for iid data, such as Johnston (1982), Fan and Zhang (2000),
and Claeskens and Van Keilegom (2003). The main advantage
of our method is to have extended these desirable properties
from iid data to sparse functional data, by relying heavily on
complicated Kac-Rice Formula and Double Sum Method to
show the absolute maximum of a sequence of nonstationary
Gaussian processes (the maximal deviation of the local linear
estimator for sparse functional mean) converges to the standard
Gumbel distribution. These new additions to the nonparametric
smoothing toolkit will definitely be used in other settings where
“Hungarian embedding” fails.

Our extensive Monte Carlo experiments show that the con-
vergence of maximal deviation to the Gumbel distribution is
rather rapid for sparse functional data with total sample size
300 or larger, which is typical in application. Both theoretical
and simulation results have also demonstrated convincingly that
dependence among repeated measurements has little effect, and
one can practically compute the local linear SCC as if the data
are iid. With these observations in mind, we have applied the
SCC methodology to test several growth models for a growth
curve data.

APPENDIX A

A.1 Preliminaries

We introduce Lemmas A.1–A.4 for the proof of Theorem 3.1 (Ap-
pendix A.2). For the details of Lemma A.1, see Cierco-Ayrolles,
Croquette, and Delmas (2003) or the online supplementary materials.

Lemma A.1. [Cierco-Ayrolles, Croquette, and Delmas (2003)] Let
X(t) be a Gaussian process with almost surely C1 sample paths on
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[0, T ] and, for any integer a, a[2] = a(a − 1). Then

P {|X (0)| > u} + E
[(

UX
u [0, T ] + DX

−u [0, T ]
)
I{|X(0)|�u}

]
− 1

2
E

(
UX

u [0, T ] + DX
−u [0, T ]

)[2]

≤ P
{

supx∈[0,T ] |X (t)| > u
} ≤ P {|X (0)| > u}

+ E
[(

UX
u [0, T ] + DX

−u [0, T ]
)
I{|X(0)|�u}

]
. (A.1)

Lemma A.2. [Theorem 1 of Cierco-Ayrolles, Croquette, and
Delmas (2003)] Suppose X is a C1 real-valued Gaussian process de-
fined on an interval I and {X(t), X(s), X′(t), X′(s)} is nondegenerate
∀t �= s, (t, s) ∈ I 2. Then, denoting pV the probability density of a ran-
dom vector V:

E
(
UX

u [I ][2]
)

=
∫

I2

∫
(0,∞)2

|x ′
1||x ′

2|pXt ;Xs ;X′
t ;X′

s
(u; u; x ′

1; x ′
2)dx ′

1dx ′
2dtds,

E
(
UX

u [I ] DX
−u [I ]

)
=

∫
I2

∫ +∞

0

∫ 0

−∞
|x ′

1||x ′
2|pXt ;Xs ;X′

t ;X′
s
(u; −u; x ′

1; x ′
2)dx ′

1dx ′
2dtds.

Lemma A.3. [Theorem 2.6.7 of Csőrgő and Révész (1981)] Sup-
pose that ξi, 1 ≤ i ≤ n are iid with Eξ1 = 0, Eξ 2

1 = 1, and H (x) > 0
(x ≥ 0) is an increasing continuous function such that x−2−γ H (x)
is increasing for some γ > 0 and x−1 log H (x) is decreasing with
EH (|ξ1|) < ∞. Then, there exist constants C1, C2, a > 0 which de-
pend only on the distribution of ξ1 and a sequence of Brownian
motions {Wn(t), 0 ≤ t < ∞}∞

n=1 such that for any {xn}∞
n=1 satisfying

H−1(n) < xn < C1(n log n)1/2 and Sk = ∑k
i=1 ξi

P{max1≤k≤n |Sk − Wn (k)| > xn} ≤ C2n{H (axn)}−1.

Lemma A.4. [Theorem 1.2 of Bosq (1996)] Suppose that ξi, 1 ≤ i ≤
n are iid with σ 2 = E ξ 2

1 , E ξ1 = 0 and there exists c > 0 such that for
r = 3, 4, . . . , E|ξ1|r ≤ cr−2r! E ξ 2

1 < +∞, then for each n > 1, t > 0,
P(|Sn| ≥ √

nσ t) ≤ 2 exp{−t2(4 + 2ct/
√

nσ )−1}.

A.2 Proof of Theorem 3.1

We begin with an outline of four main ingredients in the proof of
Theorem 3.1.

(I) Denote by m = (m(Xij )), ε = (σ (Xij )εij ), ξ = (
∑∞

k=1

ξikφk(Xij )) the signal, noise and principal component vectors
in the decomposition Y = m + ξ + ε, then

m̂ (x) − m (x) = m̃ (x) − m (x) + ẽ(x), ẽ(x) = ξ̃ (x) + ε̃(x),

(A.2)

where ξ̃ (x) = eT
0 (XTWX)−1XTWξ and ε̃(x) = eT

0 (XTWX)−1

XTWε. The error structure in (A.2) allows one to study the
asymptotics of supx∈[0,1] |{m̃(x) − m(x)}/σn(x)| (the bias) and
supx∈[0,1] |̃e(x)/σn(x)| (the error) separately in Lemmas A.6-
A.14, with σn(x) given in (3.4).

(II) The strong approximation of Lemma A.9 shows that the er-
ror term ẽ(x)/σn(x) is equivalent to a Gaussian process ηn(x)
defined in (A.9).

(III) Two advanced probability tools: the Kac–Rice Formula (Lem-
mas A.1–A.2) and the Double Sum Method of Piterbarg (1996)
are combined to establish Lemmas A.11–A.13 . Partitioning a
growing interval into small and large subintervals, the Double
Sum Method whitens the process ηn(x) while the Kac–Rice
Formula allows investigating the local asymptotics of ηn(x) on
each subinterval.

(IV) The limiting distribution of supx∈[0,1] |ηn(x)|, negligibility of
the bias, and the Slutsky’s Theorem prove Theorem 3.1.

We next introduce some notations used throughout. For func-
tions an(x) and bn(x), an(x) = U{bn(x)} and an(x) = U{bn(x)} re-
spectively means that, as n → ∞, supx∈[0,1] |an(x)/bn(x)| = O(1) and
supx∈[0,1] |an(x)/bn(x)| = O(1). In addition, an(x) = Ua.s.{bn(x)} and
an(x) = Ua.s.{bn(x)} respectively means that, as n → ∞, an(x) =
U{bn(x)} andan(x) = U{bn(x)} almost surely, and Oa.s., Op , Oa.s., Op

are similarly defined. Further denote

Dx =
(

μ2,x(K) −μ1,x(K)

−μ1,x(K) μ0,x(K)

)
, (A.3)

with μl,x(K) given in (3.1)

ε̂ (x) = f −1 (x) N−1
T

∑
i,j

K∗
x,h(Xij − x)σ (Xij )εij, (A.4)

ξ̂ (x) = f −1 (x) N−1
T

∑
i,j

K∗
x,h(Xij − x)

∞∑
k=1

φk(Xij )ξik,

with K∗
x,h(u) given in (3.3)

Rij,ε (x) = K∗
x,h(Xij − x)Dx (K) σ (Xij ), (A.5)

Ri,ξ =
Ni∑

j=1

K∗
x,h(Xij − x)Dx (K)

∞∑
k=1

φk(Xij ),

with Dx(K) given in (3.2)

σ 2
ε,n (x) = f −2 (x) N−2

T D−2
x (K)

∑
i,j

R2
ij,ε (x) , (A.6)

σ 2
ξ,n (x) = f −2 (x) N−2

T D−2
x (K)

n∑
i=1

R2
i,ξ (x) ,

with K∗′
x (x) = dK∗

x (x)/dx, μl,x(L) given in (3.1)

Cx(K) = μ0,x{K∗′
x (x)2}

μ0,x{K∗
x (x)2} − μ2

0,x{K∗
x (x) K∗′

x (x)}
μ2

0,x{K∗
x (x)2} . (A.7)

It is easily verified that Cx(K) = C(K), ∀x ∈ [h, 1 − h] with C(K)
given in (3.5).

Lemma A.5. Under Assumptions (A5)–(A6), for x ∈ [0, 1]

0 < D0 (K) ≤ Dx (K) ≤ D1/2 (K) = μ2 (K) < +∞, (A.8)

while supx∈[0,1] |Cx(K)| < ∞.

Proof. See the online supplementary materials. �
Lemma A.6. Under Assumptions (A1)-(A6), for Dx(K) given in

(3.2) and Dx in (A.3),

(XTWX)−1 = f −1(x) diag(1, h−1)
{
D−1

x (K) Dx + �1,n (x)
}

× diag(1, h−1)

as n → ∞, where the 2 × 2 random matrices �1,n(x) = U(h) +
Ua.s.{

√
log n/(nh)}.

Proof. See the online supplementary materials. �
Lemma A.7. Under Assumptions (A1)–(A6), as n → ∞, ‖m̃(x) −

m(x)‖∞ = Oa.s.(h2).

Proof. It simply follows from Lemma A.6 and (A.2). See Proof of
Theorem 6.5, p. 268 of Fan and Yao (2005). �

Lemma A.8. Under Assumptions (A1)–(A6), for ε̂(x) and ξ̂k(x)
given in (A.4),

ẽ (x) = {1 + �2,n (x)}{̂ε (x) + ξ̂ (x)}
as n → ∞, where the 2 × 2 random matrices �2,n(x) = U(h) +
Ua.s.{

√
log n/(nh)}.
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Proof. See the online supplementary materials. �
Let Xij , 1 ≤ i ≤ n, 1 ≤ j ≤ Ni be descendingly ordered as X(t),

1 ≤ t ≤ NT, Sq = ∑q
t=1 ε(t) where ε(t) is corresponding in index to

X(t).

Lemma A.9. Given (A1)–(A6), then there exists a sequence of
Wiener processes {WNT (t)}NT

t=1 independent of {Ni, Xij, ξi 1 ≤ i ≤ n,

1 ≤ j ≤ Ni, 1 ≤ k ≤ ∞} such that as n → ∞ and for some t
′
> 2/5

‖̂ε (x) − ε̂NT (x)‖∞ = Oa.s.(n
−t

′
),

with ε̂NT (x)={NTf (x)}−1
∑NT

t=1 K∗
x,h(X(t) − x)σ (X(t)){WNT (t) −

WNT (t − 1)}.
Proof. See the online supplementary materials. �
Lemma A.10. Under Assumptions (A1)–(A6), as n → ∞,∥∥∥∥∥∥N−1

T

∑
i,j

R2
ij,ε (x) − E R2

1,ε (x)

∥∥∥∥∥∥
∞

= Oa.s.{
√

log n/ (nh)},
∥∥∥∥∥N−1

T

n∑
i=1

R2
i,ξ (x) − (E N1)−1 E R2

1,ξ (x)

∥∥∥∥∥
∞

= Oa.s.{
√

log n/ (nh)},

with Rij,ε(x) and Rik,ξk (x) given in (A.5).

Proof. See the online supplementary materials. �
Throughout the remainder, define the standardized noise processes

as

ηn (x) = η (x) = {̂εNT (x) + ξ̂ (x)}{σ 2
ε,n (x) + σ 2

ξ,n (x)
}−1/2

, x ∈ [0, 1]

(A.9)

with ε̂NT (x), ξ̂ (x), σ 2
ε,n(x) and σ 2

ξ,n(x), respectively, given in Lemma
A.9, (A.4) and (A.6). For any n and fixed x ,

L {
η (x) |(Xij , Ni), 1 ≤ j ≤ Ni, 1 ≤ i ≤ n

} = N (0, 1) ,

and hence L{η(x)} = N(0, 1) which implies η(x) is a standardized
Gaussian process (nonstationary).

To compute the extreme value of η(x), one needs to study
its correlation function. In the following, denote xh−1 =
t ∈ [0, h−1], mt = m(t) = E η(t), r(t, s) = E η(t)η(s),
rt = r(t, t), r0t = r(0, t), r1,0(t, s) = ∂r(α, β)/∂α|(t,s), r1,1(t, s) =
∂2r(α, β)/∂α∂β|(t,s), η1,1(t, s) = ∂ E η(t)η(s)/∂t∂s, t, s ∈ [0, h−1]

and C(t)
def= Cth(K), t ∈ [0, h−1] , with Cth(K) as in (A.7), so that

C(t) ≡ C(K) , ∀t ∈ [1, h−1 − 1]. Clearly, for any n,

m (t) = 0, r (t, t) = rt ≡ 1. (A.10)

and it is easy to verify that for ∀t ∈ [0, h−1]

r1,0 (t, t) = 0, (A.11)

while for v2 = var{η′(t)|η(0), η(t)}, see (15) in the online supplemen-
tary materials, s, t ∈ [0, h−1] and |t − s| ≥ 2,

rst = r1,0 (t, s) = 0, v2 = r1,1 (t, t) . (A.12)

Lemma A.11. Under Assumptions (A1)–(A6)

lim
n→∞

sup
t∈[0,h−1]

|r1,1(t, t) − C(t)| = 0. (A.13)

There exist constants 0 < c < C < ∞, 1 > δ > 0, such that for large
n

inf
t,s∈[0,h−1],|t−s|<2

r (t, s) ≥ −1 + c > −1,

sup
2>|t−s|≥δ, t,s∈[0,h−1]

r (t, s) ≤ 1 − c < 1, (A.14)

sup
0<|t−s|<δ,t,s∈[0,h−1]

max[r1,0 (t, s) /(t − s),

{1 − r2 (t, s)}/ (t − s)2] ≤ C, (A.15)

inf
0<|t−s|<δ,t,s∈[0,h−1]

min[r1,0 (t, s) /(t − s),

{1 − r2 (t, s)}/ (t − s)2] ≥ c,

sup
0<|t−s|<δ,t,s∈[0,h−1]

r1,1 (t, t) − r2
1,0 (t, s) /(1 − r2)

(t − s)2 ≤ C, (A.16)

inf
0<|t−s|<δ,t,s∈[0,h−1]

r1,1 (t, t) − r2
1,0 (t, s) /(1 − r2)

(t − s)2 ≥ c,

sup
|t−s|<2,t,s∈[0,h−1]

|r2
1,0(t, s)/{1 − r2(t, s)}| ≤ C (A.17)

inf
|t−s|<2,t,s∈[0,h−1]

|r1,0 (t, s) / (1 + r) |√
r1,1 (t, t) − r2

1,0 (t, s) /(1 − r2)
≥ c

Proof. See the online supplementary materials. �
In what follows, the “double sum” method of Piterbarg (1996) will

be applied to study the extreme value distribution of the sequence
of Gaussian processes η(t) over the growing interval [0, h−1]. Parti-
tion the interval [1, h−1 − 1] as 1 = a1 < b1 < a2 < b2 < · · · < aN <

bN = h1 − 1, assuming Il = [al,bl], l = 1, . . . , N, I ′
l = [bl, al+1], l =

1, . . . , N − 1 and the length of Il and I ′
l are λn and 2, respectively,

where (λn + 2)N = h−1 and λn → ∞, N → ∞ as n → ∞.

Lemma A.12. Under Assumptions (A1)–(A6), for u = un satisfying
2
√

C(K)Nλnϕ(un)ϕ(0) → − log(1 − α) with C(K) given in (3.5)

lim
n→∞

P{supt∈[0,1)∪N−1
l=1 I ′

l ∪(h−1−1,h−1] |η(t)| ≤ u} = 1.

Proof. In Lemma A.1, for ∀ [a, b] ⊆ [0, h−1], one computes ac-
cording to Cierco-Ayrolles, Croquette, and Delmas (2003) or the online
supplementary materials.

E
[(

Uη
u [a, b] + D

η
−u [a, b]

)
I{|X(a)|≤u}

]
= 2ϕ (u)

{
ϕ (0)

∫ b

a

√
r1,1 (t, t)dt

−
∫ b

a

(
ϕ (0)

√
r1,1 (t, t)

[
1 − 


{√
r1,1 (t, t)

√
1 − rat

1 + rat

u

v

}]

+ r1,0 (t, a)√
1 − r2

at

ϕ

(√
1 − rat

1 + rat

u

)



{
r1,0 (t, a)

1 + rat

u

v

})
dt

−
∫ b

a

(
ϕ (0)

√
r1,1 (t, t)

[
1 − 


{√
r1,1 (t, t)

√
1 + rat

1 − rat

u

v

}]

− r1,0 (t, a)√
1 − r2

at

ϕ

(√
1 + rat

1 − rat

u

)



{−r1,0 (t, a)

1 − rat

u

v

})
dt

}
. (A.18)

According to (A.13) and (A.17), it is clear that as n → ∞,

sup
1≤l≤N−1

E
[(

Uη
u [bl, bl + 2] + D

η
−u [bl, bl + 2]

)
I{|X(bl )|≤u}

] = O {ϕ (u)} .

Hence, the upperbound of (A.1) shows that, if 2
√

C(K)
Nλnϕ(un)ϕ(0) → − log(1 − α) as n → ∞,

N−1∑
l=1

P
{

supI ′
l′
|η (t)| > u

} = O [2N {1 − 
 (u)}] + O {Nϕ (u)} = O (1) ,

Similarly, while t ∈ [0, 1) ∪ (h−1 − 1, h−1] , one can show that

P{supt∈[0,1)∪(h−1−1,h−1] |η (t)| > u} = O {1 − 
 (u)} + O {ϕ (u)}
= O (1) .
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Finally, this lemma is proved by

P{supt∈[0,1)∪N
l′=1

Il′ ∪(h−1−1,h−1] |η(t)| > u}
≤ P{supt∈[0,1)∪(h−1−1,h−1] |η (t)| > u} +

∑N−1

l=1
P{supI ′

l
|η (t)| > u}.

�
Lemma A.13. Under Assumptions (A1)–(A6), for u = un satisfying

2
√

C(K)Nλnϕ(un)ϕ(0) → − log(1 − α) with C(K) given in (3.5),

lim
n→∞

P
{

sup∪N
l=1Il

|η (t)| ≤ un

} = 1 − α.

Proof. First, to apply Lemma A.1, we rewrite

E
[(

Uη
u [al, bl] + D

η
−u [al, bl]

)
I{|X(al )|≤u}

] =
∫ al+2

al

+
∫ bl

al+2
= I1l + I2l .

Similar to Lemma A.12, one also can show that as n → ∞,

sup
1≤l≤N

I1l = O {ϕ (u)} . (A.19)

Further, since ral t = r1,0(t, al) = 0, v2 = r1,1(t, t) for ∀t ∈ [al + 2, bl],
see (A.12), one can simplify (A.18) as

I2l = 2ϕ (u) ϕ (0)
∫ bl

al+2

√
r1,1 (t, t)dt

− 4ϕ (u) ϕ (0) {1 − 
 (u)}
∫ bl

al+2

√
r1,1 (t, t)dt,

hence if 2
√

C(K)Nλnϕ(un)ϕ(0) → − log(1 − α), as n → ∞,

sup
1≤l≤N

|I2l − 2λnϕ (u) ϕ (0)
√

C (K)| = O {ϕ (u) λn} . (A.20)

Therefore, (A.19) and (A.20) show that

sup
1≤l≤N

∣∣∣ E
[(

Uη
u [al, bl] + D

η
−u [al, bl]

)
I{|X(al )|≤u}

]
− 2λnϕ (u) ϕ (0)

√
C (K)

∣∣∣ = O {ϕ (u) λn} . (A.21)

Now consider the second-order moment and it is easy to verify that

E
(
Uη

u [al, bl] + D
η
−u [al, bl]

)[2]

= 2 E Uη
u [al, bl][2] + 2 E

(
Uη

u [al, bl] D
η
−u [al, bl]

)
.

By Lemma A.2 and the Hölder inequality

E Uη
u [al, bl][2]

=
∫

s,t∈[al ,bl ]2

∫
(0,∞)2

∣∣η′
1

∣∣ ∣∣η′
2

∣∣ pηt ;ηs ;η′
t ;η′

s

(
u; u; η′

1; η′
2

)
dη′

1dη′
2dtds

=
∫

s,t∈[al ,bl ]2
E{η′ (t)+ η′ (s)+ |η (t) = η (s) = u }pη(t),η(s) (u, u) dtds

≤
∫

s,t∈[al ,bl ]2
E1/2[{η′ (t)+}2 |η (t) = η (s) = u ]

× E1/2[{η′ (s)+}2 |η (t) = η (s) = u ]pη(t),η(s) (u, u) dtds

=
∫

2≤|s−t |,s,t∈[al ,bl ]2
+

∫
δ≤|s−t |<2,s,t∈[al ,bl ]2

+
∫

|s−t |<δ,s,t∈[al ,bl ]2

= I1l + I2l + I3l , (A.22)

where pη(t),η(s)(u, u) = (2π
√

1 − r2)−1 exp{−u2/(1 + r)}, see Azaı̈s
and Wschebor (2009) p. 96, Gaussian Rice Formula, and δ ∈ (0, 1)
which does not depend on n, see Lemma A.11.

For I1l , one has E[{η′(t)+}2|η(t) = η(s) = u] ≤ E[{η′(t)}2|η(t) =
η(s) = u] ≤ E2{η′(t)|η(t) = η(s) = u} + var{η′(t)|η(t) = η(s) = u}
and

E{η′ (t) |η (t) = η (s) = u } = r1,0 (t, s) u/ (1 + r) , (A.23)

var{η′ (t) |η (t) = η (s) = u } = r1,1 (t, t) − r2
1,0 (t, s) /(1 − r2),

see Azaı̈s and Wschebor (2009) p. 96. If |t − s| ≥ 2, then rst =
r1,0(t, s) = 0 so E{η′(t)|η(t) = η(s) = u} = 0 and var{η′(t)|η(t) =
η(s) = u} = r1,1(t, t). Hence

I1l ≤
∫

2≤|s−t |,s,t∈[al ,bl ]2

√
r1,1 (t, t)

√
r1,1 (s, s)

1

2π
exp(−u2)dtds,

(A.24)

which implies that

sup
1≤l≤N

I1l = O{
ϕ2 (u) λ2

n

}
. (A.25)

For I2l , similarly,

I2l ≤
∫

δ≤|s−t |<2,s,t∈[al ,bl ]2

{
r2

1,0 (t, s) u2/ (1 + r)2 + r1,1 (t, t)
}1/2

× {
r2

1,0 (s, t) u2/ (1 + r)2 + r1,1 (s, s)
}1/2

× 1

2π
√

1 − r2
exp{−u2/ (1 + r)}dtds. (A.26)

By (A.14), for large n , ∃c > 0 such that sup|t−s|≥δ>0(1 + r) ≤ 2 − c

and inf|t−s|≥δ>0 |1 − r2| ≥ c > 0, so ∃ constants L1, K1 > 0 such that

sup
1≤l≤N

I2l ≤ L1ϕ {(1 + K1) u} λn. (A.27)

One can bound I3l using the inequalities (4.10) and (4.11),
Azaı̈s and Wschebor (2009) p. 97, that is, for Z ∼ N(μ, σ 2), if
μ > 0, E(Z+)2 ≤ μ2 + σ 2 and if μ < 0, E(Z+)2 ≤ (μ2 + σ 2){1 −

(−μ/σ )} + μσϕ(μ/σ ). Since η′(t), η′(s) conditioning on η(t) =
η(s) = u have a joint Gaussian distribution, see Azaı̈s and Wschebor
(2009) p. 96, we denote

μ1 = E{η′ (s) |η (t) = η (s) = u },
μ2 = E{η′ (t) |η (t) = η (s) = u }, (A.28)

σ 2
1 = var{η′ (s) |η (t) = η (s) = u },

σ 2
2 = var{η′ (t) |η (t) = η (s) = u }.

Next, we claim that while 0 < |s − t | < δ , μ1 and μ2 have opposite
signs. In fact, if 0 < |s − t | < δ, by (A.15), for large n, r1,0(t, s) ∼
(t − s) and r1.0(s, t) ∼ (s − t) and by (A.14), inf|t−s|<δ (1 + r) ≥
c > 0, which imply that μ1μ2 < 0,see (A.23). Further, accord-
ing to (A.17), (A.23), for large n, ∃ constant L2 > such that
inf|t−s|<2,t,s∈[0,h−1] |μ2|σ−1

2 ≥ L2u. Without loss of generality, by
(A.28), let μ1 > 0 > μ2, then

I3l ≤
∫

|s−t |<δ,s,t∈[al ,bl ]2

√
μ2

1 + σ 2
1

[ (
μ2

2 + σ 2
2

) {1 − 
 (−μ2/σ2)}

+ μ2σ2ϕ (μ2/σ2)
]1/2 1

2π
√

1 − r2
exp{−u2/ (1 + r)}dtds.

It follows from (A.15) and (A.16) that for large enough n, ∃ constants
L3, L4, L5,K2 > 0 such that

sup
1≤l≤N

I3l ≤
∫

|s−t |<δ,s,t∈[al ,bl ]2
L3

√
(s − t)2 u2 + (s − t)2

× [{(s − t)2 u2 + (s − t)2} {1 − 
 (L2u)}
− (s − t)2 uϕ (−L2u)]1/2 |s − t |−1 ϕ (u) dsdt

≤ L5δϕ {(1 + K2) u} λn. (A.29)

Hence, if 2
√

C (K)Nλnϕ (un) ϕ (0) → − log (1 − α), as n → ∞,
(A.25), (A.27), and (A.29) imply that

sup
1≤l≤N

E Uη
u [al, bl][2] = O {ϕ (u) λn} .

Similarly, one has E(Uη
u [al, bl]D

η
−u[al, bl]) = o{ϕ(u)λn} and then

sup
1≤l≤N

E
(
Uη

u [al, bl] + D
η
−u [al, bl]

)[2] = O {ϕ (u) λn} . (A.30)
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In fact, by Lemma A.1, (A.21) and (A.30) show that, as n → ∞,

P{supIl
|η (t)| > u} = 2

√
C (K)ϕ (u) ϕ (0) λn + O {ϕ (u) λn} .

(A.31)

Finally, since E η (t) η (s) = 0 while t ∈ Il, s ∈ Im, l �= m, then
η (t) , η (s) for t ∈ Il, s ∈ Im, l �= m are independent Gaussian pro-
cesses, then P{sup∪N

l=1Il
|η (t) | ≤ u} = ∏N

l=1[1 − P{supIl
|η (t) | > u}]

and hence

P{sup∪N
l=1Il

|η (t)| ≤ u}

= exp

(
N∑

l=1

log
[
1 − P{supIl

|η (t)| > u}])

= exp

(
N∑

l=1

log[1 − 2
√

C (K)ϕ (u) ϕ (0) λn + O {ϕ (u) λn}]
)

= exp[−2N
√

C (K)ϕ (u) ϕ (0) λn + O {Nϕ (u) λn}].
Since 2

√
C (K)Nλnϕ (u) ϕ (0) → − log (1 − α) as n → ∞, then it fol-

lows from the definitions of N, λn, un that limn→∞ P{sup∪N
l=1Il

|η (t)| ≤
u} = 1 − α. �

The quantile Qh (α) given in (3.5) satisfies
2
√

C (K)Nλnϕ {Qh (α)} ϕ (0) → − log (1 − α), as n → ∞, then
Lemmas A.12 and A.13 imply that limn→∞ P{sup[0,1] |η (x)| ≤
Qh (α)} = 1 − α, that is,

lim
n→∞

P
[
ah{sup[0,1] |η (x)| − ah} − log{

√
C (K)/ (2π )}

≤ − log{− log
√

1 − α}] = 1 − α. (A.32)

In particular, sup[0,1] |η (x)| = Op(
√

log n).

Lemma A.14. Under Assumptions (A1)–(A6), let �3,n(x) = σ̃n(x)
σ−1

n (x) − 1,x ∈ [0, 1], then �3,n(x) = U (h) + Ua.s.{
√

log n/(nh2)}
and for ε̂ (x) , σ 2

n (x) given in (3.4) as n → ∞
sup
[0,1]

|σ−1
n (x) {̂εNT (x) + ξ̂ (x)} − η (x) |

= sup
[0,1]

|�3,n (x) | |η (x)| = Op{h
√

log n +
√

log 2n/(nh2)}.

Proof. See the online supplementary materials. �

Proof Of Proposition 3.1. The proof is trivial. �

Proof Of Theorem 3.1. The decomposition (A.2) implies that

σ−1
n (x) {m̂ (x) − m (x)} = σ−1

n (x) {m̃ (x) − m (x)} + σ−1
n (x) ẽ(x).

(A.33)

As (A.32) implies that sup[0,1] |η (x)| = Op(
√

log n), Lemma A.14
leads to

sup[0,1] σ
−1
n (x)

∣∣̂εNT (x) + ξ̂ (x)
∣∣ = Op(

√
log n).

and hence by Lemma A.9, sup[0,1] σ
−1
n (x)

∣∣̂ε (x) + ξ̂ (x)
∣∣ =

Op(
√

log n). Therefore, Lemma A.8 implies that

sup[0,1] σ
−1
n (x)

∣∣̃e(x) − {̂ε (x) + ξ̂ (x)}∣∣
= Op{h

√
log n +

√
log 2n/(nh2)}. (A.34)

It follows from (A.34), Lemmas A.9 and A.14 that for t ′ > 2/5 (as-
sumption A5 ),

sup[0,1]

∣∣σ−1
n (x) |̃e(x)| − |η (x)|∣∣

= Op{h
√

log n +
√

log 2n/
(
nh2

) +
√

hn−t ′+1/2},

Further, (A.34) and Lemma (A.7) warrants that

sup[0,1]

∣∣σ−1
n (x) |m̂ (x) − m (x)| − |η (x)|∣∣

= Op{√nh5/2 + h
√

log n +
√

log 2n/(nh2) +
√

hn−t ′+1/2},
(A.35)

and therefore

ah supx∈[0,1]

∣∣σ−1
n (x) |m̂ (x) − m (x)| − |η (x)|∣∣

= Op

[√
log h−1{√nh5/2 + h

√
log n +

√
log 2n/(nh2)

+
√

hn−t ′+1/2}] = Op (1) . (A.36)

Finally, by Slutsky’s Theorem, (A.32) and (A.36) show that

lim
n→∞

P
[
ah{sup[0,1] σ

−1
n (x) |m̂ (x) − m (x)| − ah}

− log{
√

C (K)/ (2π )} ≤ − log{− log
√

1 − α}] = 1 − α,

which is

lim
n→∞

P{supx∈[0,1] σ
−1
n (x) |m̂ (x) − m (x)| ≤ Qh (α)} = 1 − α.

SUPPLEMENTARY MATERIALS

Supplement to “A Smooth Simultaneous Confidence Corri-
dor for the Mean of Sparse Functional Data”: Supplement
containing the details of Lemma A.1 and theoretical proofs
referenced in the main article.

scbsfda.R: R package containing code to perform SCC and SCI
estimations for the mean of sparse functional data.

[Received April 2013. Revised September 2013.]
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