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NON- AND SEMIPARAMETRIC
IDENTIFICATION OF
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Non- or semiparametric estimation and lag selection methods are proposed for
three seasonal nonlinear autoregressive models of varying seasonal flexAllility
procedures are based on either local constant or local linear estimgtiothe
semiparametric modelafter preliminary estimation of the seasonal parameters
the function estimation and lag selection are the same as nonparametric estima-
tion and lag selection for standard modeAsMonte Carlo study demonstrates
good performance of all three method$ie semiparametric methods are applied

to German real gross national product and UK public investment &atathese
series our procedures provide evidence of nonlinear dynamics

1. INTRODUCTION

In nonlinear time series analysisonparametric estimators provide great flex-
ibility because no parametric function class must be chosen a .p@orithe
other hangdmost existing results on nonparametric estimators require the data
generating process to be stationarygondition often violated by economic time
seriesAlthough the most common source of nonstationarity is treseasonal
patterns also play an important role

The flexibility of nonparametric techniques has not been available for sea-
sonal time serigsbecause of a lack of nonparametric autoregression models
that incorporate seasonal nonstationaAtpopular approach for removing sea-
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sonal nonstationarity is to use seasonally adjusted. ddia, howevey is not
justified for nonlinear modeling for at least four reasoRgst, the effect of
such seasonal filters on data exhibiting nonlinearities is unclear as virtually all
seasonal adjustment procedures have been designed for linear proSesses
ond Ghysels Grangeyand Siklos(1996 show that some of these procedures
such as X-11 involve nonlinear transformations that may change the properties
of the original dataThird, data adjusted with most model-based seasonal ad-
justment procedures and procedures with model-based interpretation are non-
invertible Such procedures include those used by official agen8es e.g.,
Maravall (1995 for details® Thus an additional approximation error is intro-
duced if finite-order AR mode]ither parametric or nonparameirare used
Finally, using seasonally adjusted data is misleading if a useful orthogonal de-
composition of the original data into a treralseasonaknd an irregular com-
ponent does not exisEee the examples in the work by Frangg396 Ch. 6),
who advocates periodic linear autoregressive models with autoregression pa-
rameters that vary with the seasoiberefore standard nonparametric models
are not appropriate for seasonally adjusted .data

In this paper we consider three seasonal nonlinear autoregressive models of
varying seasonal flexibilityThe most general model allows for changing con-
ditional means across seasons and generalizes periodic autoregressive models
For this modelwhich provides a very flexible way to model seasonality with-
out imposing much structuyeve suggest nonparametric estimation and lag se-
lection methods and state some asymptotic properties

This generality has its pricd he effective sample size of the nonparametric
procedures is given by the size of a single sea$bis model may therefore be
less useful for small data sets typical in macroeconontios such a task we
propose a less flexible seasonal nonlinear model whose seasonal regression func-
tions are equal to additive constanide suggest three semiparametric estima-
tors that are shown to have the standard effective sample size

The same is shown for the semiparametric estimator of an alternative sea-
sonal process that can be decomposed into a nonseasonal nonlinear autoregres-
sive component and additive deterministic seasonal shiftsse seasonal shifts
can be used for seasonally adjusting data alternative model is analyzed by
Burman and Shumwag1998, who allow the seasonal shifts to be multiplied
by a nonlinear function of timehowevey at the cost of assuming the nonsea-
sonal component to be linead®rbe Ferreira and Rodriguez-Po¢2000 de-
velop nonparametric estimators of time-varying coefficients under seasonal
constraints

In practice the relevant lags of the autoregression are unknama a lag
selection procedure is needédfe therefore extend the final prediction error
methods of Tschernig and Yanfg@000 to the seasonal models and show that
the probability of selecting the correct lags approaches one asymptatioaly
simulation study shows that the proposed seasonal lag selection methods work
in small samplesMoreover we find that the non- and semiparametric proce-



1410 LIJIAN YANG AND ROLF TSCHERNIG

dures for nonlinear processes outperform linear methods in terms of the predic-
tion power if the processes are nonlineghis holds for prediction based on
both the correct or the selected set of lags

To illustrate the semiparametric procedyre® model two macroeconomic
time seriesGerman real gross national prod&NP) and UK public invest-
ment for which series we find evidence of nonlinear dynamkesr the formey
which exhibits stronger nonlinearjtthe semiparametric procedure forecasts sub-
stantially better

It is well known that multivariate function estimation suffers from inaccu-
racy commonly referred to as the “curse of dimensiondlifihis nuisance can
only be reduced by imposing special restrictions on a general multivariate func-
tion to obtain a less flexible structur8uch examples include the generalized
additive structure and varying-coefficient structure proposed by Hastie and Tib-
shirani(199Q 1993 and in time series analysithe additive structure of the
conditional mean in Chen and Ts&¥993, Tjgstheim and Auesta{19943,
Masry and Tjgstheini1996, and Yang(2000 or the multiplicative structure of
the conditional volatility in YangHardle and Nielsen(1999. Further research
could provide guidance on how such functional restrictions should be imposed
on the seasonal models we propose here

In contrastlag selection that has to precede any function estimation suffers
less from the curse of dimensionalifyhis robustness of nonparametric lag se-
lection can be attributed to its discrete nature and has already been observed
for nonseasonal AR processes in Auestad and TjgstiED®0 and Tjgstheim
and Auestad1994h and more recently in Tschernig and Ya(2p00. These
authors suggest the idea of “de-linking” lag selection from function estimation
so that the relevant lags may be first selected using a very general nonparamet-
ric procedure after which appropriate structures may be imposed on the se-
lected variables for improved function estimatiéior examplethe multiplicative
modeling of the conditional volatility function in Yang et. dl.999 was car-
ried out not on arbitrary lagged variables but on those selected according to the
nonparametric lag selection method of Tschernig and Ya660. In our Monte
Carlo study the robustness of lag selection is also corroborated for seasonal
processesThe identification rates of non- or semiparametric methods for the
correct lags are about 5Q%vhereas those of linear methods may be close to
zero(see the correct identification rates represented by dark rectangles in Fig-
ures 5 and B Therefore we regard the lag selection methods proposed in this
paper as preliminary steps for imposing additive or other structures on seasonal
autoregressiarAs such they are quite satisfactary

As a final remark we note that the three models only cover various kinds of
deterministic seasonalitjNonstationarity due to stochastic seasonality has to
be removed prior to the non- or semiparametric mode(jagt like trends. To
avoid overdifferencing and thus a noninvertible series one may use the HEGY
test(Hylleberg Engle Grangeyand Yoq 1990.

The paper is organized as followls the next section we discuss three sea-
sonal nonlinear autoregressive models with different kinds of seasonal flexibil-
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ity. Section 3 presents nonparametric estimation and lag selection for the general
seasonal nonlinear autoregressive prochssSection 4 we present semipara-
metric estimators for the two restricted seasonal mod&dstion 5 describes
details of implementing the various procedurgle results of the Monte Carlo
study are presented in Section®e empirical applications are contained in
Section 7 and Section 8 concludeAll assumptionslemmasand proofs are in

the Appendix JMULTI, which is a menu-driven software based on GAYSS
contains almost all procedures that are presented in this .plaperavailable

from http//isewiwi.hu-berlinde/oekonometrig.

2. SEASONAL NONLINEAR AUTOREGRESSIONS

Assume now that the proce$¥ }—o has a stationary distribution for each of
the Sseasondlt will often be convenient to write the time indexast = s+ Sr
wheres = 0,1,...,S — 1 denotes the season and= 0,1,... represents a new
time index Throughout this papewe consider a realizatiofY; }{_, of sample
sizen + 1.
The most general seasonal process that we consider is the seasonal nonlinear
autoregressivéSNAR) model given by

YS+TS = fS(XS+TS) + O-S(XS+TS) §S+TS’ (1)

whereX; = (Y—;,,Yi—i,,..., Y )" is the vector of all the correct lagged val-
uesi, < --- <ip, and theg,’s are independent and identically distributgdd.)

with E(&) =0, E(é2) =1, t=s+ 7S=i,,in+ 1,..., and they are indepen-
dent of the start-up conditioX;_. Note that the conditional volatility functions
os(-) may depend on a subvector ¥, ,s or even be constanfThe case in
which o4(-) depends on lags not ify(-) is beyond the scope of this papém
contrast to the standard nonlinear autoregression model the regression func-
tions { f.}5_5 here are allowed to vary with th® seasonsThis is a nonlinear

generalization of the periodic ARPAR) model

p
Ysirs = bs+ 2:1 @isYsirs-i T €sirs (2

iz
(see e.g., Franses1996 p. 93; Litkepohl 1991, p. 391). For this reasonone
can also view the SNAR model as a periodic nonlinear autoregregsiemon-
parametric estimation of th8 regression function§(-) and selection of the
lagsi, < --- < i, will be discussed in Section. 3ote thati,, can be much
larger tharm. For examplethe selected lag vector for the German real GDP is
given by(1,4,7), som= 3,i,, = 7 (see Table #

We do not allow the set of lags < --- < i,,to vary with the season# the
latter case the task of estimation and lag selection has to be carried out sepa-
rately for each of theS data setd(Xq, s, Yer s)}YS), s = 0,1,...,S — 1 using
methods for nonseasonal modése therefore can directly apphg., the pro-
cedure of Tschernig and Yartg000. Pooling the information for all seasons is
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only useful if some features of the seasonal process the lags are the same
across seasons

As will be seen in Section,3he effective sample size for estimation and lag
selection of mode(1) is n/S For some macroeconomic applications this may
be too smallFor examplemodel(1) provides too much flexibility for 30 years
of quarterly dataOne mayhowever restrict the seasonal flexibility in the con-
ditional mean functions td,(-) = f(-) + b, s= 0,1,2,...,S — 1 so that the
seasonal variation of the functions between ¢tfeand the Oth season is re-
stricted to the constant shifts. By definition by = 0. The resulting process

Ysirs = F(Xgirs) + bs+ 05(Xsir5) €sirs, (3

is a restricted seasonal nonlinear autoregresdim call this second model a
seasonal dummy nonlinear autoregres$®®NAR) model because it is a gen-
eralization of the seasonal dummy linear autoregresS@AR) model

P
Yoirs = b+ 2:1 @i Ysirsi T Esirse (4)
iz

In Section 4 we show that after estimating the seasonal dhifthe nonpara-
metric functionf(-) in the SDNAR model3) can be estimated with an effec-
tive sample size ofi. The same also holds for lag selection

Another way of restricting the seasonal nonlinear autoregression nibdel
is to assume that the seasonal process is additively separable into a seasonal
mean shifté;, s = 0,1...,S — 1, and a nonseasonal nonlinear autoregression
{U;}, i.e, Ysi,5 = 8 + Ug,,s. One may call

Yoirs = 0s = F(Vsirs iy = O(siggs-+vs Yorrsin — Ofs—ip})
+ 0 (Ysrs—i, = Ofs—ijs-+s Yorrsip, — Ofs—ip}) Estrs (5)

a seasonal shift nonlinear autoregressi®iNAR) model Here we define
{a} for any integera as the unique integer between 0 aBid- 1 that is in
the same congruence class asnodulo S. For identifiability, one assumes
that 5, = 0. This SHNAR model is another way of generalizing the SDAR
model (4) where the constants,,...,8s_; of the linear model are obtained
up to an additive constant via the system of linear equatimns 65 —
Zip:]_ai 8{S—i}7 S= 0,1,...,8_ 1.

For estimating the seasonal mean shé#is...,ds 1 in the SHNAR model
(5), a simple parametric method is proposed in Section 4 that allows us to es-
timate and analyze the nonseasonal progbss.s = Ys.,s — 85} by standard
nonparametric methodswe remark that none of the proposed models allows
the seasonal features to vary with timddthough this also is possihlé is likely
to provide too much flexibility for typical sample sizeSlternatively one may
restrict the nonseasonal part of the conditional mean function to be lineqr in
but allow the seasonal shift to depend on tifseg e.g., Burman and Shum-
way, 1998.
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3. SNAR IDENTIFICATION

Model identification requires two stepkg selection and estimatiofror the
lag selection procedure presented in Sectichdhe a priori has to seledd,
which is the largest lag considered in the lag seaftterefore we reserve the
first M observations as starting values and for elkcks t = n define the full
lag vectorX,m = (Yi—1,...,Yi—m)". Note that the candidate lag vect¥y is a
subvector oiX; v. In the sequelx andxy,, denote values oX; andX; y, respec-
tively. If one is only concerned with estimation and if the correct lag vextor
is known the largest lagM is set to the largest lag, contained in the lag
vector X;. We need some additional notatidret iy s be the smallest integer
equal to or greater thaMl/S ns=[(n+ 1)/S] — 1, andnys=ns+1—iys
and for eacts = 0,1,...,S— 1, denoteYs = (Yo, .5 Ysr iy s+ 50+ ++» Yorngs) ' -

3.1. Estimation

For anyx € R™ the Nadaraya—Watson estimdies(x) and local linear esti-
matef, s(x) of the seasonal functiorig(x) in the SNAR mode(1) are given by

fas(0) = fa s(x,h) = €J{Z OWe(X) Z, s(X)} 2L OW(X) Y,

a=12, (6)
in which
1 1 T
Z(x)=(1 .. 1)1-ng,3, Zy s(X) = | Xsisjs— X Xsrsns = X |,
— " T n

, 1 s
I R U

M, S T=im,s

whereK: R! — R is a symmetric probability density with compact support
and

for u € R™; h = h, is a positive numbetbandwidth, h — 0, nh™ — oo as
n — oo. Further we denoté¢K |2 = fK?(u)du, o? = [K(u)u?du.

THEOREM 1 Under Assumptions (Al) and (A2) in the Appendix, for
a=12, as n— oo, the estimation bias of the nonparametric estimdggéx, h)
is 1y s(X)0¢h%2 where

2V us(X)VEs(x)

rl,s(x) = TI’{szS(X)} + /»LS(X)

s r2,s(x) = Tr{szs(x)}, (7)
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whereas the estimation variance is

om T2

K ®)

Derivation of these terms for the standard céSe= 1) can be found in Har-
dle, Tsybakoy and Yang(1998. The u¢(x) in equationg7) and(8) represents
the stationary density of seasenwhich exists according to assumpti¢il).
Among many othersAngo Nze (1992 and Cline and P¢1999 provide sim-
ple conditions to ensure strict stationarity gBdanixing. These conditions are
extended to seasonal processes by Theotemhizh follows and can be checked
for many given processeSee the example in Sectionl6

(E1) The erroré; has a density function that is positive everywhexed so
are the seasonal volatility functions’(-),s=0,1,...,S— 1.

(E2) There exist an integdr= max(M/S 1), a constanR > 0, and a matrix
of coefficients(agj)o=s=s-1,1=j=ks With all a5; = 0 and may_.-s ; E}(fl ag =
a<lsuchthatfor&=es=S—-17=k

E(|Yoirs!|Ysirs-1= Y1,-v, Yorrs ks = Yks) = E as;|y| 9

when minsj—slyj| = R

THEOREM 2 Under conditions (E1) and (E2), the process ¥
(Yos,Yos—1s..,Yos—kse1) T, 7 = k k + 1,... is geometrically ergodic. If the ini-
tial Vi has a stationary distribution, then the process is both strictly stationary
and geometrically3-mixing.

3.2. Lag Selection

We now adapt lag selection procedures for standard nonlinear autoregressive
time series to the SNAR modé€l). For lag selection in the standard case with
S=1 Auestad and Tjgstheiti990 and Tjgstheim and Auestdd994b intro-

duce nonparametric versions of the final prediction effelPE), which were
analyzed theoretically and significantly improved upon by Tschernig and Yang
(200() For seasonal time series we define the FPE of the estimid{S & of

{11575 as the following functional

S—l

FPE({ f}&5) = = 2 E[{Yerrs = fs(Xer ) PW(Xg i rgm)],

wherew denotes a weight function ar{&t} is another sgries with exactly the
same distribution agy;} but independent ofY;}. Becausd, s(x) and therefore
the FPE depends primarily dnwe denote

FPE,(h) = FPE({ f, s}&-0)-
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The next theorem extends Theorerh & Tschernig and Yan000 to SNAR
processesNote that in this theorem and throughout this paper drop the lag
reference and denote all seasonal densitieg fiyxy) or ws(X).

THEOREM 3 Under Assumptions (A1)-(A6), for-a 1,2, as n— oo the
FPEbased on the correct set of lags is

FPE.(h) = AFPE,(h) + ofh* + ny’sh™™},

in which the asymptotiEPES(AFPE9 are

AFPE,(h) = A+ b(h)B + c(h)C,, (10)
where
18
A=g ; fMS(XM)a OW (X ) dXy, (11)
1 S-1
B=¢ 20 ps(Xa) 0 2(X)/ 1s(X)W (X ) Ay, (12)
1 1
Co= g 2 | rZu0malx) WO dx, (13)
and where

b(h) = [K[Z™ysh™™  c(h) = alh¥4.

Solving the variance-bias trade-off {(@0) allows one to derive an asymptot-
ically optimal bandwidth

h = {m[K H%mBnM sCa Loy M, (14)

a,opt —

which can be estimated by plug-in metho8g&e Section 5 for details
To estimate the asymptotic FPEs the following estimate#\ @nd B are
needed

A 15} & )
A(h) = g _ Z {Ys+-rS - fa, s( XS+’TS’ h)}ZW(XS+TS M ),
s=0 Mm,s 7=iy s
é(h ) _ E st 1 § {Ys+rs - f;,s(xs+787 hB,S)}ZW(XS+TsM)
. S s=0 M,S im,s /ls(strrS’ hB,s) ’

in which the bandwidth& andhg = (hg,...,hg s-1)" are all of the same or-
derny’4™"¥ as the optimal bandwidth, ., and/isis a kernel estimator of the
density us using bandwidthhg ..
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Because is the dominant term in the AFPE expressi¢h6), one takes into
account the bias of its estimaté(h) and inserts the bias corrected estimate
into (10). This delivers the following estimator fokFPE,(h):

AFPE, = A(h, opt) + 2K(0)™nylsh, 0B (hg). (15)

From both asymptotic consideration and simulation restlitshernig and Yang
(2000 conclude that when usil§FPE,, the probability of including extra lags

in addition to the correct ones is larger than that of missing some of the correct
ones In other wordsoverfitting is more likely than underfittind3ased on this
Tschernig and Yang propose a corrected ARRPRAFPE) by multiplying the
AFPE, with a penalizing factor for overfitting and find in simulations that this
corrected AFPE selects lags correctly much more often than the uncorrected
AFPE Similar to equation(4.1), p. 466 in Tschernig and Yand2000, the
correctedAFPEs for the seasonal case are given by

CAFPE, = AFPE{1 + mry ™9}, (16)

Whatever FPE criterion one wants to ueae selects the subs{é{, e, i}n} with
the smallestC) AFPE, where (C)AFPE, denotes the quantities according to
(15) or (16) for every subsetiy,...,iy} of {1,...,M}.

As in Tschernig and Yan@2000, one can show that the following theorem
holds

THEOREM 4 Under Assumptions (A1)—(A6) the lag selectiog proqedure
based on either (15) or (16) consistently selects the correct lags, ilg...if, I
are the selected lags, then as# oo

Plm=mi =i,j=12,...,m - 1L

Note that if the true process is lineae,, if all functionsf;,s=0,...,S—1
are lineaythen all ther, ((x) = 0 by equation(7), which implies by(13) that
C, = 0 for the local linear CAFPEThis causes assumpti@A6) to fail, and a
variance-bias trade-off is no longer availab#s noted in Tschernig and Yang
(2000, the local linear CAFPE becomes inconsistent in this chsgethe alter-
native local constant CAFPE remains consistBaspite thiswe suggest using
the local linear CAFPE as it is faster to compute and also has performed quite
satisfactorily for linear processes in our Monte Carlo study in Section 6

4. SDNAR AND SHNAR IDENTIFICATION

Although the function estimators for the SNAR model discussed in the previ-
ous section provide ample seasonal and nonlinear flexipititg important to
realize that they use onlyy,, s observationsa number much smaller thanand
evenn/S This may render estimation of the seasonal nonlinear autoregression
(1) difficult if the sample sizen is already smallln this section we develop
semiparametric estimators for the seasonal dummy nonlinear autoregré®sion
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and the seasonal shift nonlinear autoregres&nin both modelsthe param-

eters can be estimated with a faster rate of convergence and then effectively
“removed” so that the regression function becomes the same for all seasons
and alln — M observations can be used for estimation and lag seledtlware-

fore the standard lag selection methods of Tschernig and Y2000 can be
applied

4.1. Estimation of the SDNAR Model

Note that for the SDNAR modé&B) one has
bs = fs(xs+-rs) - fO(XS+’TS)' (17)

Based on(17) we will present the following three estimation methods for
bs that when the correct lags are useall exhibit a rate of convergence
Op(n~¥(M*4 + n=Y2) This rate is faster than the ra@,(n~%™*%) for func-
tion estimation

The full dummy method.For seasons’ = 1,...,S — 1, define the dummy
variableDg, .5 ¢, Which equals 1 ifs = s’ and 0 otherwiseThis allows us to
rewrite (3) as

S-1

Yt:f(xt)+ stDt,s"‘U'(Xt)ft, t=iM,SS...,ﬂ.
s=1

One can then jointly estimate the seasonal parameters and the function nonpara-
metrically For the seasonal parametésone obtains the local estimatorsxat

by(x,h) = el{(ZEWZp) 1ZEWH(X)Y, (18)

where g denotes than + S vector whosesth element is 1 and all other ele-
ments 0s=1,...,S—1,

1 1 T
DiM,Ssl e Dnl
Z (X) _ . . . ’
° Di,css-1 - Dnsi
Xippss — X X, — X
5 o

W(X) = diag{@}n :

M,S t=iy.sS
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and Y = (YiM,s’YiM,s+1’-~’Yn)T~ One then defines the weighted average
estimator

Ns

2 W(XS+TS M ) 65( Xs+757 h)

bs = , (19)

Ng

E W(Xs+rs M)

T:iM'S

wherew(-) is the same weight function as used in the FRAEE next establish
the asymptotic behavior df;.

THEOREM 5 Under Assumptions (A1)—(A5), for aly= s = S — 1,
as n— oo, h = Bng¥(M4 the estimatoibs based on the correct set of lags
satisfies

bs— bs = O,(h* + n~Y/2),

The proof of this theorem rests on two lemmas that can be found in the Ap-
pendix Lemma A4 shows that the usual bias of ordet is canceled by the
differencing of seasons 0 arsdwhereas Lemma & states that the usual vari-
ance of ordefnh)™* gets smoothed out to order?! as a result of the averag-
ing of by(Xs,,s, h). Therefore if one subtractshg from Y for all s = 1,...,

S— 1 to obtainYs = Y — b, then by the faster convergence of the estimator
(19) one has

YS+7’S = f(XS+TS) + U(XS+TS)§S+TS + Op(n74/(m+4) + n71/2).

Thus using the adjusted daféX,, Y,)}i_y, one can estimate the functidmvith
an effective sample size as in the nonseasonal case

Two alternative procedures for the estimation gf bTo obtain the first al-
ternative one may include in the “regressors matrix” only the dummy of season
sinstead of all dummies.e,,

1 1 T
20— Dy.ss - Dns
Xipss — X X, — X
T ces h

and then define the local estimator lnfat x as
bs(x,h) = eJ{(ZIpWZ p) *ZIpWHX)Y,  s=1,...,S-1, (20)

in which e, is them + 2 vector whose second element is 1 and all other ele-
ments 0 One then defineb, by the averaging formulé&l9) using(20). We call
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this approach the “partial dummy methbdn contrast to the “full dummy
method” based oK18).

The second alternative may be termed the “two estimators methadiely
define

b(x, h) = £, s(x,h) = f54(x, h), (21)

wheref},s(x, h) is the local linear estimator as defined (). In this case one
inserts(21) into the averaging formulél9) to obtainbs.

For both approaches the cancellation-and-smooth-out effect of Theorem 5
remains valid ifb is the average oby(Xs.,s, h), 7 = im.ss---,Ns, defined by
either(20) or (21). The relative merit of these two methods is simplicithereas
the full dummy method is more robust

4.2. Lag Selection in the SDNAR Model

Because one can estimate the functiomith an effective sample size using

the adjusted datf( X, Y,)}i_u, one can treat the adjusted data as being nonsea-
sonal This suggests applying the local constant or local lingArAFPE lag
selection criteria for the standard nonlinear autoregression as in Tschernig and
Yang (2000. These estimators are obtained by set@&pnual to 1 in equations

(15) and(16) and taking into account that the procéé@}t m can be treated as

if it has the average seasonal dengityx) = 1/82S o ms(X).

However before the nonseasondl) AFPE criteria can be used one has to
check how the seasonal parameter estim@t®r for obtaining the adjusted data
behaves if an incorrect set of lags is uséane uses a set of lags that overfits

e, if the set includes all the lags,...,i,, and more then one still has
b, — bs = O,(h™* + n~/2). This can be seen by examining the proof of Theo-
rem 5 in the Appendix

The case of underfitting is slightly more complicatder simplicity sup-
pose lagsy,...,i,y are used wher@i{,...,i/ } is a proper subset dfy,...,in}.
Denote byx’ = (X,..., X’ )T the variable vector correspondlng to the lags
andx = (x/,x"). Further denote for each seassn= 0,1,...,S— 1 the discrep-
ancy betweerfi(x) and its conditional expectation oti as

fsH (%) = f(x) — MS(X')*lff(X’,U”)MS(X’,U”)dU” =f(x) — E{f(0)[x'}.

We now assume that every functifyh(x) has at least one nonzero point in the
interior of the support ofv, and hence for each seasaohe squared projection
error into the submodel is positiv&his is satisfied by simply enlarging the
support ofw so that its interior includes at least one nonzero point from each
fsH(x), which is easy as all th&*(x)'s are nonzero functions on the support
of us.

The following theorem is a refined version of Theorem 5
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THEOREM @ Under Assumptions (Al)—(A5), for any underfitting model and
1=s=S-1 asn— o, h’' = Bng¥M*+4,

bs—bs = f{ st (%) = fo" (X)W (xm) ws(Xu ) dxy + Op(h72).

So the estimate®, approximate the parametebs to the order ofh* +
n~Y2 = n=#Mm+4 4 n~Y2 which is higher than the order ™4 of the
function estimatesprovided all the correct lags are used in the computation
whereas the bias would be nonvanishing if the lags undénfithe latter case
the estimation of (-) by the adjusted datf X{,Y,)}f_,, will have a nonvan-
ishing bias as in the case of the standard autoregression mptled the non-
zero bias introduced by the estimation of thés. One then faces the same
situation as in Tschernig and Yani@000 because théC)AFPEs then ob-
tained will be larger than the true prediction error by a positive constant up to
higher order termsOne therefore can select the lags based @ AFPE for
each set of lags after the data are adjusted by the estimated seasonal param-
eters based on that sd@terefore thes€C) AFPEs have the same properties as
in Tschernig and Yan§2000.

4.3. SHNAR Model

The seasonal shift modé) is easier to analyze than the seasonal dummy model
(3). In this caseUg,,s = Ygi,s— 65, 5=0,...,S— 1,7 =0,1,..., is a station-
ary process that satisfies

US+TS =f (US+TSfi1’ (RS} US+T&im) + O-(USJrTSfil’ [ERE US‘FTS*im)éS‘FTS‘

Hence one definesUs = Y. — 8 as a substitute o, where §; =
Mvls ?iiM'S(YSﬂS - Y,s) is the estimatedth mean shiftfor all s = 1,...,
S— 1. This is based on the following theorem

THEOREM 7. Under Assumptions (A}, (A2), (A3), and (A4—(AE) in the
Appendix, and assuming that tis$1NAR model (5) is true,

\/ﬁ(ss - 63) — N(O’ &-32)

foralls=1...,S— 1, wherec? = E(Y; — Y, — 8% + 227 1 E(Y, —
Yo — 85) (Ys+rS ~Yis— 65)-

HenceU, — U, = O,(n~%2) for all t = M,...,n. One thus can use the sea-
sonally adjusted datéJ,}I",, as a substitute fofU,}I",, for estimatingf(-).
The same applies to lag selectjdmence one applies the AFPE and CAFPE
criteria of Tschernig and Yan(2000 to the proces$U, }i_,, to determine the
lags

In the presence of nonlinearities the SDNAR and SHNAR model are mutu-
ally exclusive Therefore one may choose for any given data set the model
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with the smaller CAFPE because the prediction error of a given model indi-
cates the departure of the data set from the imposed model structure

5. IMPLEMENTATION

In this section we describe how to estimate the unknown quanBtiasd C,,

a = 2, needed for the plug-in optimal bandwidth4) and the CAFPEs of the
SNAR model and also of its restricted SDNAR versi@mly local linear(a = 2)
procedures are implementexs we want to avoid the complicated bias terms of
local constant proceduréa = 1). We use the Gaussian kernel for all nonpara-
metric estimatesFor all proceduregsthe weight functionw(x) is the indicator
function on the range of the observed ddtar robustification 5% of those
observations whose densities are the lowest are screenethdffeave-one-out
features are implemented for all estimations

5.1. SNAR Model

To estimate the seasonal densitiegn B(hg), we use the rule-of-thumb band-
width of Silverman(1986 equation(4.14), Table 41, pp. 86-87 hg s =
h(m+ 2,65,nys), s=0,...,S— 1 where

h(k o, n) = o {4/Kky Y21k

and s = {[IZ,4/Var(Y,_;)}'™ denotes the geometric mean of the standard
deviation of the regressors in each season

The seasonal functiorfgare estimated by local linear estimatdigg defined
in (6) with the same bandwidthg . This simple bandwidth has the appropriate
rate and performs in our small sample experiments nearly as well as the rule-
of-thumb bandwidth of Yang and Tschernig099.

For the estimation of the second derivativesds) we use a local quadratic
estimator that excludes all cross derivatiwegh a simple bandwidth rulec s =
h(m + 4,364,y s). As a simplification of the partial local cubic estimator of
Yang and Tschernigl999, this is sufficient for lag selectigrwhich requires
less precision than function estimation

5.2. SDNAR Model

To obtain the adjusted;, t = M, ..., n, the first step is the estimation of sea-
sonal dummies by the full dummy method given @8) and (19). By Theo-

rem 5 there does not exist the usual bias-variance trade-off that leads to an
optimal bandwidth because the usual bias of otdfecancels outWe takehg =
h(m+ 2,4,Sny s) with & = {II;Z, \/Var(Y_iJ)}l/m, which has the optimal rate

for function estimationFor estimating the unknown quantities in the CAFPE
for the adjusted datf(X,,Y,)}f_y we use all specifications of Section15set-

ting Sto L
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6. MONTE CARLO STUDY

In this section we document the practical performance of the estimation and
lag selection methods derived for the three seasonal nonlinear autoregressive
models on data of moderate samples

6.1. Setup

All processes are homoskedastic and fulfill the relevant assumptions in the Ap-
pendix We used conditionsE1) and (E2) of Section 31 to obtain geometri-
cally ergodic processe$o start in the stationary distribution we generated

400 observations and discarded the first AB6ometric ergodicity ensures con-
vergence to the stationary distributidexplicit burn-in times can be computed
using Theorem 12 of Rosenth@d995 or Theorem &L in the more recent Rob-
erts and Tweedi€1999, which both provide bounds on the total variation norm
Both theorems involve lengthy calculations of many constdmace they are

not carried out for the examplelmstead we used simulations based on the total
variation norm and found that = 400 is more than sufficienin total, we
consider 8 different processes and always allow all lag combinations up to lag
M = 6. For every experiment we conduRt= 100 replications

SNAR processes.To investigate the general identification devices discussed
in Section 3 that can handle SNAR modé€l$, we consider one periodic auto-
regression and one seasonal nonlinear autoregressive preaesswith two
seasons200 observationsand standard normal errgr§; ~ N(0,1), and one
seasonal nonlinear autoregressive process with four sead@hebservations
and standard normal errors

PAR2 Periodic autoregressive procg®s of orderp = 3 with two seasons
and parameterg,p = 0.55, a1, = —0.3, ayp = az; = 0, azg = —0.4, and
az] = 0.3.

SNAR2 Seasonal nonlinear autoregressive process of grekeB with two
seasons

Y, = i aig Y T (i ,BisYti>
-1 i1

1
+ t
1+ explyaYr — ) | ©

(22)

with a0 = 0.55, a1 = 0.3, aop = Qo1 = 0, 3o = 0.4, a3z = 0.55 andﬁlo =
—11,B11=—06,B20=B21=0,B30=~08 B31= ~11, v0=v1=3,C=
C = O, IO = 3, andll =1

SNAR4. Seasonal nonlinear autoregressive pro¢28sof orderp = 2 with
four seasons and parameterg = 0.55, a1 = 0.3, a1, = —0.3, a3 = 0.55
aso= 0.4, ap, = 0.55 @y, = —0.55 a3 = —0.4 andB,p= —1.1, B11. = —0.6,
B12=0.6, B13=1.1, Boo= —0.8, 81 = —1.1, B, =11, B3=0.8, yo =y, =
’yZ:’)/3:3,C0:C1:02:C3:O,and|0:2,'1:1,|2:1,|3:2.
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Function
Function

Ficure 1. Functions of the SNAR2 proces@) for season 1(b) for season 2

To make lag selection difficult the PAR2 and SNAR2 processes contain the
nonconsecutive lags 1 and Bhe two functions in the SNAR2 process were
chosen for their contrasting shape as can be seen from Figures lawhidHp
display them on the relevant randeigure 2 displays the four seasonal func-
tions of the SNAR4 process

Using elementary techniques one can check that conditigds and (E2)
are met by all processes in this sectidiis is demonstrated for the process

FEunction
Function

_‘-«;\'/ \<‘A RSN
RS
IR
SRS

Function
Function

Ficure 2. Functions of the SNAR4 proces@) for season 1(b) for season 2(c) for
season 3(d) for season 4
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SNAR2 First, we setM = 4 andk = 2. Becauset; ~ N(0,1), (E1) is clearly
met To check(E2), notice that foras = {1 + exp[—ys(Yss2,-1, — )]}~ one
has

3
E(|Yss2, | |Ys+2-r—1 =VYiees Yor2r—a =Ya) = 2 |ajs + as:gjs||yj| + El&|

i=1
3

= E |ajs+ asBjsHYj| + C,
i1

whereC = (1/v27) f|x|e *72dx. Note that as a function o, lajs + asBis|
is convex hence

lajs + asBis| = (1— ag)|ajs + 0 X Bis| + ag|ays + 1 X B
=(1-ay)|as| + aslajs + Bl

((1— a,)|0.55| + a,|0.55— 1.1] =0.55 s=0,j =1
(1—ay)|0|+a4]0—-0|=0 s=0,j=2
(1—ay)|0.4| + 8,)0.4— 08/ =04 s=0,j=3
(1—a,)|0.3] +a,]0.3- 0.6/ =0.3 s=1j=1
(1—a,)|0] +a,/0-0|=0 s=1j=2
[(1-a,)[0.55| + a,/0.55— 1.1| =055 s=1j=3.

Therefore one has

0.55|y,| + 0.4]ys] s=0

= 4= =C+
E([Ysror||Ysr2r-1= Y1+, Yer2r 4a=VYa) =C {O.3|y1+0.55|y3| s=1

Hence if one takes the matrix
055+6/2 0 04+6/2 O
(@go=s=115=2= | 034 5/2 0 a55+8/2 0

for somed € (0,0.05), setR =1 + §IC, anda = makgﬁlﬁleasj =
0.95 + 4, thena < 1 and(9) holds

SDNAR and SHNAR processe$:or the SDAR mode(4), the SDNAR model
(3), and the SHNAR mode{5) we consider the following specificationall
with 100 observationgour seasonsand standard normal errogs.

SDAR. Seasonal dummy linear autoregressidnof orderp = 3 with sea-
sonal parameters; = 1, b, = 0.3, b; = —0.6 and autoregressive parameters
o = 0.3, Ay = 0, anda3 = 0.4.

SDNARL1 Seasonal dummy nonlinear autoregression

Yy = (Y1, Yi—p) + 0.5D ; + 1.5D; , + 0.8D, 3 + &,
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with
f(Yi-1,Yi2) = —0.6Y,_1 + 0.2Y,_, + (Y;-; — 0.5Y )

1+ exp(—5Y,_,) (23)

SDNAR2 Seasonal dummy nonlinear autoregression

Yy = —0.6Y; 3 +0.2Y > + (V-1 — 0.5Y;,) 1+exp(l—2Yt2)
+ Dy1+ 2D, + D3+ &
SDNAR3 Seasonal dummy nonlinear autoregression
1
T expl—4(—005+ Y, —3v,; | O3Vt 03V
— 0.3D;; — 0.5D;, — 0.1D, 5 + V0.1&,.
SHNAR. Seasonal shift nonlinear autoregression

Yt - 55 = f(thl - 5{571}’Yt72 - 8{572}) + gt
with f(-) given by(23) andé, =1, §, = 1.5, 65 = 0.5.

All nonlinear functions were chosen to represent various degrees of smooth-
ness and complexitylheir plots are displayed in Figures 3a-dte seasonal
parameters were selected such that seasonality is substantial but not dominating

n

Functio

Ficure 3. Functions of the various seasonal dummy processas SDNARL
(b) SDNARZ (c) SDNAR3
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For lag selection we consider four criterfast of all, we compute the local
linear versions of the CAFPEs developed in the previous sectinradition
we compute the linear FRRIC, and Schwarz criterianFurthermorewe in-
vestigate the performance of the suggested non- and semiparametric estimators
in terms of their mean integrated squared error and their prediction power rel-
ative to linear procedures

For each replicatignlet X’ denote a subvector of,, whereasx represents
the correct lag vectoDefine the integrated squared error

1 .
70 00N 2 { 1:s(xi’) - fs(xi )}2, (24)

ISE(f) = 10,0004

where the sum is over J@W00 observationsThe mean integrated squared error
MISE( f,) is defined as the average SE( f;) over theR replications The vec-
tor X’ can consist of the correct set of lags or can be selected from the respec-
tive criteria

We also define the one-step prediction error by averaging

{Vner1 — fo(Xpei1)}? (25)

over theR replications

6.2. Results on Lag Selection

All results of the Monte Carlo simulations are shown in Figures.Z=&&h bar
graph corresponds to one of the processes described previously and displays
the empirical frequencies of the four criteria to correctly(fitack baj, overfit
(bar with vertical lineg and underfitUnderfitting is further split into two cases
no wrong lags includedbar with horizontal linesand wrong lags included
(white bap. The last case can be considered the worst outcome of all four as it
is neither parsimonious nor includes the correct model

Figure 4 displays the results for the linear periodic PAR2 process and the
seasonal dummy linear SDAR process expected the linear Schwarz crite-
rion (SC) performs best in terms of correct selectiohise nonparametric CAFPE
performs better than AIC and linear FPE for the PAR2 process whereas all three
are comparable for the SDAR procegecall from the comment after Theo-
rem 4 that the local linear CAFPE is inconsistent for linear processekit is
well known that both the linear FPE and AIC are inconsistent as. viakre-
fore, it seems preferable to use the much more general CAFPE than the linear
AIC or linear FPE

If one is interested in minimizing underfittingne should use the linear AIC
or FPE These criteria exhibit the largest empirical frequencies to include the
correct lags

Figures 5 and 6 show the results for the seasonal nonlinear procébges
main conclusion to be drawn here is that for all processes considered the non-
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FiGUrE 4. Empirical frequencies of the lag selections for the PAR2 and SDAR pro-
cessesHl: correct fitting M overfitting; £: underfitting without wrong lagsd: under-
fitting with wrong lags

parametric CAFPE scores highest in terms of correct selections and in most
cases it is the only useful procedure because the linear criteria can fail com-
pletely This failure is drastic for the seasonal nonlinear SNAR4 process with
four seasonghe seasonal dummy nonlinear SDNAR1 and SDNAR?2 processes
and the seasonal shift nonlinear SHNAR procéssontrastthe CAFPE’s per-
formance loss for linear processes is much less severe

The results for the seasonal nonlinear processes SNAR2 and SNAR4 in Fig-
ure 5 show that the number of seasons is not important as long as there are
enough observations for each segasifi0 in both case<ertainly the observed
selection rates would drop if the total number of observations decre@sed
maintain similar success rateme has to reduce the seasonal flexibjiich
was the main motivation for the SDNAR and SHNAR modéisr the latter
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FiGUure 5. Empirical frequencies of the lag selections for the SNABRIAR4, and
SDNARL1 processed: correct fitting M: overfitting; &: underfitting without wrong
lags O: underfitting with wrong lags
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Ficure 6. Empirical frequencies of the lag selections for the SDNABRNAR3 and
SHNAR processed: correct fitting ll: overfitting; £: underfitting without wrong lags
O: underfitting with wrong lags
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models even 100 observations are sufficient to guarantee reasonable lag selec-
tion results as can be seen from the lower plot of Figure 5 and Figuféae
plot for the SDNAR3 process also shows that the success rate can reach almost
80%

If one only requires the selection procedures to include the correctilags
minimize underfitting then the CAFPE criterion also performs h&dtis holds
for underfitting without wrong lags and also with wrong lags

In sum the local linear CAFPE criterion shows good performance for all
seasonal processds may therefore provide a useful compromise between re-
liable lag selection in the presence of nonlinearities and a tolerable decrease in
the correct lag selection probability for linear DGPs that is comparable to that
between the linear Schwarz criterion and the linear AIC

6.3. Results on Estimation and Prediction

Besides identifying the relevant lags is also important to be able to accu-
rately estimate the conditional mean functions and to predicerefore we
compare the mean integrated squared er(MESE) and prediction errors of
the proposed estimators and of simple linear ofiée computing of these er-
rors is described in Section6

The upper part of Table 1 displays the results for the linear periodic auto-
regressive PAR2 proceshs expectedfitting a nonparametric SNAR model to
a linear process increases the M|Sioth for correct lags and selected lags
The same phenomenon is true for the prediction errSiilar conclusions
can be drawn from the lower part of Table 1 for the seasonal dummy linear

TaBLE 1. Mean integrated squared error and prediction erRariodic auto-
regressive processes

Selected lags Correct lags
CAFPE FPE AIC SC Nonp Linear
PAR2 process
Under/CorrecyOverfitting  3955/6  0/47/53  0/47/53 2/97/1
MISE( fo) 0.2022 Q0580 00580 00398 00811 00346
MISE( f1) 0.1476 00531 00531 00349 00927 Q0329
One-step prediction error 1743 10384 10384 09976 10392 Q9974
SDAR process
Under/Correct/Overfitting  51/42/7 8/50/42 8/50/42 2959/12
MISE( fA) 0.3877 01617 01617 01843 02284 00992
MSE(by) 0.1246 01125 01125 01027 01135 Q0782
MSE(b,) 0.3109 01901 01901 02321 01791 01410
MSE(Bg) 0.1588 01067 01067 01141 Q1177 Q0867
MISE(f + 32, bD. ) 0.3118 01144 01144 01290 01859 Q0769

One-step prediction error 9736 10080 10080 09982 10075 09855
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TABLE 2. Mean integrated squared error and prediction e®easonal nonlin-
ear autoregressive processes

Selected lags Correct lags
CAFPE FPE AIC SC Nonp Linear
SNAR2 process
Under/CorrecyOverfitting  30/69/1  31/27/42  31/27/42 66/29/5
MISE( fo) 0.3928 04904 04904 05638 02570 04503
MISE( fy) 0.4096 04263 04263 05306 03163 03982
One-step prediction error .2838 14404 14404 17376 11263 14070
SNAR4 process
Unders/Correcy/Overfitting  50/50/0  78/5/17 78/5/17 990/1
MISE( fo) 0.2626 03638 03638 03565 01563 03524
MISE( fy) 0.2456 03402 03402 03056 Q1467 03334
MISE( f5) 0.2523 03265 03265 03442 01363 03122
MISE( f3) 0.2330 03222 03222 03274 01312 03440

One-step prediction error 1014 10861 10861 12925 09380 11525

autoregressive SDAR proced8e note for the SDAR process that although the
seasonal parametebg are estimated poorly with the semiparametric proce-
durg the semiparametric lag selection is roughly as good as the linear proce-
dures as seen in Figure.4

Are there substantial gains of the non- and semiparametric procedures in the
case of nonlinear seasonal processes? Table 2 contains the results for the sea-
sonal nonlinear autoregressive proces3é® largest improvement in predic-
tion error of the nonparametric procedure over Schwarz based lag selection and
linear estimation is about 26% and occurs for the SNAR2 pro¢e2838/
17376 — 1 = —26%). For the MISE of function estimation the largest reduc-
tion is 30% as in the case &f of the SNAR2 process

Table 3 contains the results for the seasonal dummy and seasonal shift non-
linear processes SDNARSDNARS3 and SHNAR There is a substantial reduc-
tion in MISE and prediction error for the SDNARL1 process if the semiparametric
method is employed-or the SDNAR3 the gain in prediction error becomes less
pronounced if lags have to be selected first and vanishes otheragsehe
SHNAR process the semiparametric reduction in MISE and prediction error for
f are larger than for the SDNAR1 process that is generated by the fsfame-
tion. One possible explanation is that the shift process is only one simple trans-
formation from a standard process whereas the dummy process can never be
transformed into a standard process

We conclude that the non- and semiparametric identification procedures sug-
gested in Sections 3 and 4 are overall superior to linear procedures if the gen-
erated process is nonlineavhereas the loss in MISE and prediction power
remains tolerable in case of linear proces$tsgardless of predictiohag se-
lection is still quite robustThis is traditionally attributed to the discrete nature
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TaBLE 3. Mean integrated squared error and prediction e®easonal dummy
and seasonal shift nonlinear autoregressive processes

Selected lags Correct lags
CAFPE FPE AlIC SC Nonp Linear
SDNARL1 process
Under/Correct/Overfitting  2366/11  990/1 99/0/1  100/0/0
MISE( f) 0.3907 05005 05005 04739 02816 04868
MSE(by) 0.1180 01280 01280 01045 01169 00918
MSE(by) 0.1672 01503 01503 01600 Q01470 01359
MSE(bs) 0.1462 01190 01190 01199 Q01250 Q0967
MISE(f + 32, bD. ;) 0.3574 04707 04707 04735 02558 04685
One-step prediction error 1697 14848 14848 13950 11031 14183
SDNAR3 process
Under/CorrecyOverfitting ~ 0/78/22  3/46/51 3/46/51 5/77/18
MISE( ) 0.0720 Q0672 Q0672 Q0632 Q0653 Q0550
MSE(by) 0.0147 00186 00186 00118 Q0135 Q0142
MSE(b,) 0.0158 00462 00462 00397 Q0154 00244
MSE(bs) 0.0191 00264 00264 00228 00180 Q0150
MISE(f + 33, bsD.s) 0.0678 00551 00551 00535 Q0619 Q0507
One-step prediction error .mM57 01515 01515 01489 01549 01485
SHNAR process
Under/Correc/Overfitting 2567/8 71/7/22  717/22 90/5/5
MISE( f) 0.3490 04327 04327 04273 02669 04508
One-step prediction error 14031 17306 17306 17074 12145 15276

of the latter In any casgethe proposed procedures turn out to be applicable in
practice The next section will illustrate this

7. EMPIRICAL APPLICATION

We apply the semiparametric methods introduced in Section 4 to two seasonal
macroeconomic time seriequarterly real West German GNP from 196Q@o
19904 compiled by Wolterg1992 p. 424, note 4 and quarterly UK public
investment in 1985 prices from 1942to 19884 taken from Osborr{1990.
These series were chosen because there exists a detailed analysis using linear
periodic models and seasonal unit root testing by Fra(k@36 and because
they are available via the World Wide WeRII data are analyzed in logs

In the introduction it was noted that the nonparametric analysis requires re-
moving (non)seasonal unit roots from the data fir§o save space we refer to
the detailed analysis in Frans€k996 pp. 66—72. He uses the HEGY proce-
dure and extension8llowing for a time trend and seasonal dummies and choos-
ing the lag order by means &*tests he finds for the German real GNP roots
at 1 and—i,i and for the UK data roots at all seasonal frequencies and the zero
frequency However for the German real GNP the evidence for the seasonal
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roots at—i,i vanishes if one allows for shifting means in the middle of the
sample We therefore investigate the two series after taking first and fourth dif-
ferencesrespectivelyMoreover for the lag selection procedure we divide each
resulting series by its standard deviation

For lag selection the SDNAR modéB) and the SHNAR mode(5) are ap-
plied, whereas the SNAR modé¢l) is not fitted because of the small number
of years In addition the three linear criteria FRRAIC, and SC are usedn
all cases the procedures search over all possible lag combinations up to lag
M = 8. Table 4 summarizes the selection results for both data ketsntains
the selected lagshe values of the selection criteyiand the estimated optimal
bandwidths The lags are ordered with respect to their contribution to reducing
the selection criterionThe first column indicates the moddlhe modelf = 0
contains only seasonal dummies but no lagged regresBoesvariance of the
resulting noise is equivalent to that &k = Y, — &, the adjusted data after
removing the mean shift8ecause the original data have been divided by the
standard deviatigrthe variance of the adjusted data is at most.one

We compare the forecasting performance of all procedures using recursive
prediction errors computed as followst each timet, observations up to time
t — 1 are used to select the lags and predfidior approximately the last 20%
of observations of each time seridis amounts to the last six and five years
of the German and UK dataespectively Table 5 shows for each model and
both data sets the average of the squared deviations of the predicted values
from their corresponding true ones

TaBLE 4. Semiparametric lag selection

Model Criterion Selected lags Esfriterion Nopt

First differences of German real GNP data

f=0 Var(Y,) 0 0.23 —
Dummy CAFPE M7 0.075 Q53
Shift CAFPE 42,8 0.084 Q41
Linear FPE 2.8 0.091 —
Linear AIC 42,8 —2.393 —
Linear SC 42 —2.233 —
Fourth differences of UK public investment
f=0 Var(Y,) 0 0.991 —
Dummy CAFPE 16,5 0.407 124
Shift CAFPE 16,5 0.392 107
Linear FPE 12,4,6,8 0.438 —
Linear AlIC 12,4,6,8 —0.826 —
Linear SC 12,4 —0.610 —

Note: The selected lags are listed with respect to their contribution to reducing the CAFREmMaximal lag
considered is 8and all possible lag combinations are considefiét linear models are SDAR models
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TABLE 5. Recursive prediction errors

Dummy Shift

Data CAFPE FPE AIC SC CAFPE FPE AlC SC

German 0413 00534 Q0504 Q0528 00524 00578 Q0582 00598
UK 0.9623 08808 08562 Q9458 08291 Q7972 Q7933 Q9183

Table 4 shows that regressing the first differences of the German real GNP
data only on seasonal dummies reduces the varianc23oWsing the SDNAR
model lags 41,7 are selectedThe corresponding CAFPE of @5 implies a
further substantial reduction in the error varian€aking the SHNAR model
instead leads to lags28 and a CAFPE value of.084 The FPE estimate of
the linear model selects the same lags and its valueDi&10

We inspected the estimated residuals of both nonlinear models using God-
frey misspecification testée.g., Godfrey 1979, which test an ARp) model
against an ARp + r) model or an ARMAp,r) model Here we use = 1 and
r = 4. In addition the Jarque—Ber@&IB) test statistic is compute@ecause the
Godfrey tests are designed for linear modéte results have to be interpreted
with care To save space we left out all test statistidewever they are all far
below the linear critical valugsnd so the results may be quite robustpar-
ticular, there is no seasonality left in the residyalad so using the first differ-
encing filter is justified

Following the discussion at the end of Section 4 on how to select between
the SDNAR and SHNAR modgWe prefer the SDNAR model for the first dif-
ferences of the German real GNP as the corresponding CAFPE is about 11%
smaller than that of the SHNAR model

To represent the SDNAR model graphicallye keep the least important lag
lag 7, fixed and vary lags 1 and 4 on a grigligure 7 displays three surfaces of
the estimated function on the domain of the observatidodook only on the
domain of the observations reduces irrelevant boundary effésts domain is
plotted in the plane of the regressoFor visualization all values have been
multiplied by the standard deviation of the first differencesich is Q052
Lag 7 is fixed at—0.05, 0, 0.05. The estimates of the seasonal dummy param-
eters are M23 0.018 —0.050 The dummy model shows pronounced nonlin-
earities For examplecomparing the upper plot with the other two shows that
if the quarterly growth was down all quartethen today’s growth is overpro-
portionally low also The influence of the growth performance in the last quar-
ter on today’s growth is ambiguouls depends very much on the direction and
magnitude of last quarter’s growth and also on the situation one yearfago
one fits a linear model such effects may easily average out and turn out insig-
nificant. Indeed the linear criteria do not select lag 1



SEASONAL NONLINEAR AUTOREGRESSION MODEL IDENTIFICATION 1435

s
e
'l gt NFXTEE,
ey
e ey A arayy ¥y
TR R
L2 T T A,
"'J.'l‘ LI

|
=

~— Lag 4: 0.11

— -

l0.11, -0.11,

FiGure 7. German real GNPdummy model with lags 1 and 4 given lag 7 fixed at
—0.05, 0, 0.05.

The recursive prediction errors in Table 5 support the superiority of the
SDNAR model The closest competitor is the linear dummy model using AIC
lag selectionwhich is still 22% larger(0.504/0.413 = 122%. Comparing to
the linear models and the nonlinear shift mgdéis example illustrates the
empirical benefits of the more sophisticated nonlinear dummy model

For the fourth differences of the UK public investment data the selection
results are presented in TableAlffter having applied the fourth-order differ-
encing filter there is no relevant seasonality left in the data because removing
seasonal shifts from the series does not change its vari@meemay therefore
expect the SDNAR and SHNAR models to perform similahhdeed the cho-
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sen lag vector ;6,5 is the same for both models contrast all linear criteria
contain the different vector,2,4.

As in the previous casehe residual diagnostics of the nonlinear models in-
dicate no sign of misspecification and are therefore not reported Tieeesur-
faces of the estimated regression function of the SHNAR model are shown in
Figure 8 where the value of lag 5 is fixed at0.10, 0, 0.10. All surfaces look
quite smooth The deviation from linear hyperplanes is less pronounced than

£: 0.18

SRRRD
QORIRID
RIS
R

\'\\ RO

£:-0.18, Lag 1: 0.33

Ficure 8. UK public investmentshift model with lags 1 and 6 given lag 5 fixed at
—-0.10, 0, 0.1.



SEASONAL NONLINEAR AUTOREGRESSION MODEL IDENTIFICATION 1437

for the German real GNP data although still eviddriterefore a linear model
could be superior for forecastinghis is confirmed by the prediction errors
reported in Table Bwhere the recursive errors of the nonlinear shift model are
4.5% larger than those of the linear shift model using AIC lag sele¢@291/
0.7933 = 104.5%). The linearity hypothesis can be testedy., with the non-
parametric linearity tests of Hjellvik and Tjgstheit995 1996 and Hijellvik,

Yao, and Tjgstheim(1998, which can be applied to both the adjusted data
{X.,Y,} of the SDNAR model and the deseasonalized didth of the SHNAR
model The prediction results also show that for the UK data set the shift model
is the appropriate model

8. CONCLUSION

In this paperwe have proposed nonparametric estimation and lag selection meth-
ods for seasonal nonlinear autoregressive models and derived semiparametric
estimators for two restricted versignene allowing the seasonal function to
shift across seasons only by a constant paramtterother generalizing linear
unobserved components modedd methods allow for either local constant or
local linear estimationFor the semiparametric modeksfter preliminary esti-
mation of the seasonal parameteh® function estimation and lag selection are
the same as nonparametric estimation and lag selection for standard mfodels
Monte Carlo study demonstrates good performance of all three methbds
methods are applied to the German real GNP data and UK public investinent
was found that the semiparametric lag selection and estimation procedures work
even with moderate sample siz&hey help to identify more complicated dy-
namics in economic time series and can improve forecasting

NOTES

1. Most prominent examples for model-based seasonal adjustment procedures are the unob-
served components approach that includes the structural time series approach and the ARIMA model-
based approacfihe Census X-11 and the Hodrick—Prescott filter are representatives of procedures
with model-based interpretation

2. The formulation of model$3) and(5) might lead one to think that it is also possible to have
a model such as

Yo = F(Ymi, = Spemigpr oo os Yeminy — Opminy) + €1

This is in fact not useful if one still wants to have some kind of strict stationdfityie process
{Yih=o itself is stationarythen unless all the parameteis_; ,,...,8,; , are all equalin which
case they can be all set to 0 and one gets back to a standard priee¥s defined by this
expression will not be stationgrgven not for each seaso®n the other handf one wants to
have stationarity ofY; — 8y }1=0, then this equation makeg stationaryand therefore all param-
eterdy_i,y,...,0u—i,, equal We have therefore restricted our semiparametric study to mdagls
and (5).

3. All procedures were programmed in GAUSS using DLLs written i € and run on Sun
workstations

4, http://www.few.eurnl/few/people/fransegresearchibooklhtm.



1438 LIJIAN YANG AND ROLF TSCHERNIG

REFERENCES

Ango Nze P (1992 Criteres d’ergodicité de quelques modeles a représentation Markovienne
Compte Rendu a I’Académie des Sciences de Paris, séé&§ 11301-1304

AuestadB. & D. Tjgstheim(1990 Identification of nonlinear time serieFirst order characteriza-
tion and order determinatioBiometrika77, 669—687

Burman P. & R.H. Shumway(1998 Semiparametric modeling of seasonal time seresirnal of
Time Series Analysi$9, 127-145

Chen R. & R.S. Tsay (1993 Nonlinear additive ARX modelslournal of the American Statistical
Association88, 955-967

Cling, D.B.H. & H.H. Pu (1999 Geometric ergodicity of nonlinear time seri&tatistica Sinica,
1103-1118

Doukhan P. (1994 Mixing: Properties and Example®ew York: Springer-Verlag

FransesH.F. (1996 Periodicity and Stochastic Trends in Economic Time Sefedord: Oxford
University Press

Ghysels E., C.W. Granger & P. Siklos (1996 Is seasonal adjustment a linear or nonlinear data
filtering processdournal of Business and Economics Statistids374—-386

Godfrey L.G. (1979 Testing the adequacy of a time series mo@bmetrika66, 67—72

Hardle W., A.B. Tsybakoy & L. Yang (1998 Nonparametric vector autoregressigiournal of
Statistical Planning and Inferend@8, 221-245

Hastie T.J & R.J Tibshirani(1990 Generalized Additive Model&ondon Chapman and Hall

Hastie T.1 & R.1 Tibshirani (1993 Varying-coefficient modelsJournal of the Royal Statistical
Society, Series B5, 757-796

Hjellvik, V. & D. Tjgstheim(1995 Nonparametric tests of linearity for time seri@ometrika82,
351-368

Hjellvik, V. & D. Tjgstheim(1996 Nonparametric statistics for testing linearity and series inde-
pendenceJournal of Nonparametric Statistid 223—-251

Hjellvik, V., Q. Yao, & D. Tjgstheim(1998 Linearity testing using polynomial approximation
Journal of Statistical Planning and Inferené8, 295-321

Hylleberg S., R.F. Engle C.W.J Granger & B.S. Yoo (1990 Seasonal integration and cointegra-
tion. Journal of Econometricéd4, 215-238

Liptser, R.S. & A.N. Shirjaev(1980 A functional central limit theorem for martingaleEheory of
Probability and Its Application®5, 667—688

Litkepohl H. (1992 Introduction to Multiple Time Series Analysideidelberg Springer-Verlag

Maravall A. (1995 Unobserved components in economic time setie$/. Pesaran & NR. Wick-
ens(eds), Handbook of Applied Econometrigsp. 12—72 Oxford: Blackwell.

Masry, E. & D. Tjgstheim(1996 Additive nonlinear ARX time series and projection estimates
Econometric Theoryt3, 214-252

Orbe S, E. Ferreira & J. Rodriguez-Pod2000 A nonparametric method to estimate time varying
coefficients under seasonal constraidtsurnal of Nonparametric Statistick?, 779-806

Osborp D.R. (1990 A survey of seasonality in UK macroeconomic variablesernational Jour-
nal of Forecastings, 327-336

Roberts G.O. & R.L. Tweedie(1999 Bounds on regeneration times and convergence rates for
Markov chains Stochastic Processes and Their Applicati®®s211-229

RosenthaldS. (1995 Minorization conditions and convergence rates for Markov chain Monte Carlo
Journal of the American Statistical Associatiefl, 558—566

Silverman B. (1986 Density Estimation for Statistics and Data Analydiendon Chapman &
Hall.

Tjgstheim D. & B. Auestad(19943 Nonparametric identification of nonlinear time seri€sojec-
tions Journal of the American Statistical Associatif, 1398—1409

Tjgstheim D. & B. Auestad(1994h Nonparametric identification of nonlinear time seri€glect-
ing significant lagsJournal of the American Statistical Associati6g, 1410-1419



SEASONAL NONLINEAR AUTOREGRESSION MODEL IDENTIFICATION 1439

TschernigR. & L. Yang (2000 Nonparametric lag selection for time seri@surnal of Time Series
Analysis21, 457-487

Wolters J (1992 Persistence and seasonality in output and employment of the Federal Republic of
Germany Rechereches Economiques de Louvein421-439

Yang L. (2000 Finite nonparametric GARCH model for foreign exchange volati@gmmunica-
tions in Statistics: Theory and Methofisand 6 1347-1365

Yang L., W. Hardle & J.P. Nielsen(1999 Nonparametric autoregression with multiplicative vol-
atility and additive meanJournal of Time Series Analysk9), 579—-604

Yang L. & R. Tschernig(1999 Multivariate bandwidth selection for local linear regressidour-
nal of the Royal Statistical Society, Serie$B 793—-815

APPENDIX

For the results in this papewe need the following assumptians

(A1) For some integeM = i, and for each seaspthe vector procesy; y is strictly
stationary angB-mixing with 8(n) = con~@+9/% for somes > 0, ¢y > 0. Here

B(n) = Esup{|P(AIA]) — P(A)|: A E F7,

where ! is the o-algebra generated Y. > X, t+15+--» Xy, v'- FOr each seasos =

0,1,...,S — 1, {Xsi,smlizi, s has a stationary distribution with densijys m(Xm),

xm € RM, which is continuousHenceforth we useus(-) to denote bothus v (-) and all
of its marginal densitiedf the Nadaraya—Watson estimator is usgd v (-) has to be
continuously differentiable

(A2) The functionsfs(-), s = 0,1,...,S — 1 are twice continuously differentiable
whereas eachy(+) is continuous and positive on the supporfuaf-), s=0,1,...,S— 1.

(A3) The errorsi{é,}—;  have a finite fourth momer,.

(A4) The support ofw(-) is compact with nonempty interiofhe functionw(-) is
continuous and nonnegative apd(x) = c for some constant > 0 if Xy € suppw).
(A5) There exists a constact> 0 such that for any proper subsgf,...,i/} of

{it,...,im}, and anyS functions{ f/}>-& of m’ variables

S-1
E |: 2 { fs(thily""thim) - fs’(thil” . ~'7Yt7ir'nr)}2W(thl’ . ~'7YtM):| =C.
s=0

See Theorem 2 for lower level conditions to guaran#®). Note that just as in As-
sumption(Al) of Tschernig and Yang200Q p. 459), the strict stationarity condition in
the precedindAl) is not necessayput we include it here for simplicity of the praof
Assumption(A5) guarantees that all the lagjs,...,i,} are needed in als functions to
fit the model correctlyIn other words the functionsf(y,i,..., ¥, ), $= 0,1,...,

S — 1 do not reduce to functions with fewer variables on the support of the weight
functionw(.); hence none of the variablé$_; ,...,Y,_; can be left out to predicY;
conditional on past observatianthe next assumption is needed for the existence of

ha opt-
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(A6) Fora= 1,2, the C, defined in(13) are positive and finite

For the seasonal shifSHNAR) mode| several of these assumptions have to be
modified

(A1') For some integeM = iy, the vector procesg; y = (Ui—1,...,Ui_n) is strictly
stationary with continuous density functigen, (-) andB-mixing with 8(n) = con=+/?
for someé > 0, ¢, > 0. If the Nadaraya—Watson estimator is usgg,(-) has to be
continuously differentiableThe density ofV; = (U,_; ,...,U,_; ) is denoted ag.(-).

(A2’) The functionf (-) is twice continuously differentiablevhereassr (-) is contin-
uous and positive on the support @f-).

(A4’) The support ofw(-) is compact with nonempty interiof he functionw(-) is
continuous nonnegativeand bounded below from 0 on the supportvaf).

(A5’) There exists a constant> 0 such that for any proper subggt,...,i .} of
{i1,...,im}, and any functiorf’ of m’ variables

EQf(Uip. Uy ) — ’(Utfil’a---,Ut—il'T‘r)}ZW(Utfl"--»Uth)] =C.

(A6") Fora=12,
0< frzf(u)u(uM)w(uM)duM < +o0, (A.1)

where

2VT u(u)vf (u)

= 2f
ry(u) = Tr{v?f(u)} + )

;o ra(u) = Tr{V2f (W)} (A.2)

Proof of Theorem 2. Note first that conditio E1) guarantees the recurrence of the
process|V, },—«. Observe next that by repeated application of conditie) equation
(9) implies the existence of a constdrit> 0 and a matrix of coefficientg;)1=s=g1=j=ks
with all bg; = 0 and maxsﬁsﬁjkfl bg; = b < 1 such that

ks
E(IY,s-si1l|Yes-s = Y1,--, Yos s ksi1 = Yks) = E bsj|yj l,
=1

l=s=§ >k (A.3)
when min—j-yglyj| = R". Now define a functiory(v) = >SS gl | forv = (vn,...,vks)
with positive coefficientsy;, 1 = i = kS to be determined subject to the condition that

for some constants > 0and 0<c <1

E{g(V,)|V._; = v} =cg(v) — &, T=k+Lk+2,... (A.4)
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when min—j=s|y;| = R’. By definition of g(-) and equatio{A.3)

kS
E{g(V,)|V,_, = v} = E{E G [ Yosival[Voy = U}

Il
M(n

ks
O E{Y,sivalVima=0v}+ X glvigl
i=S+1

i 1

"

kS-S

SE Eblj|vj|+ 2 g]+S‘U]|

kS kS-S
= kE |UJ|ZgIbI]+ 2 |U]<91+s+29| IJ)
j=kS-S+1 i=1

To obtain(A.4), one needs to have a constant0c’ < 1 such that

kS kS-S kS
2 |U]‘Eglblj+ 2 ‘U] (gj+8+29| |]><C,Egjvj|
: =

j=kS—-S+1 i=1

when min-j=s|y;| = R’, or equivalently
S
gj+S+zgibij<gj5 1=j=kS—-§
i=1
S
> ogb;<g, kS-S+1=j=kS
i=1

which are simply

01 01

Os+1
. - (bij)lsi531gjss ’

Js Os

Os+1 01

- (bij)lsisss+1sj528 )

O2s Os

_(bij)lsisSk&ZSJrlsjsk&S s

Oks-s Os

01

gk&SJrl
(bi' )1§i53 kS-S+1=j=kS
i} ]

|
:
|

Os Oks
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where all the inequalities are taken to be elementwAggarently one can solve this
system of inequalities if and only if one can find positige 1 = i = S such that

01 01 01
(by)1=i=sks-sr1=j=ks| | <| i | = (bj)izi=si=i=s
Os Os Os

01
o (bij )1siss kS-2S+1=j=kS-S

Os
or
01 01
Os Os
Now ma>g<s<s§), 1bs;=b < limplies thatg; = --- = gs = 1 will solve the preceding
inequality Hence one can construct a functigfr) that satisfiesA.4), which entails

that the procesdV, } .- is geometrically ergodic by Theorem 3 of Doukh@994 p. 91)
from which the rest of the lemma follows also

Proof of Theorem 3 and Theorem 4.For eachs = 0,1,...,S — 1, the following
decomposition holds

E[Yerrs = fo(Xer )l 2W( Xy )] = 1o+ 11+ 1M1,
in which
= E[Verrs — o Xerr)PPW( X g )] = EL02 (X, 6)W(Xsrs ) €21 1],
Iy = E[ fi(Xsrrs) = s Xorrs)PW( X g )],
= 2E[{Yor,s = fo(Xsrre)H fs(Xsirs) = fs(Xerr s IW(Xo g )],
= 2E[{ fy(Xsrr8) = fs Kot rIW(Xsi g M) 05 Xor5) i rs] = O.

Now the innovations_:,—;sﬂs are ii.d. white noise so

1 S-1 l S-1 . . 1 S-1
2 ls = 20 E[USZ(XS+TS)W(XS+TSM)] = g 20 USZ(X)W(XM)JU’S(XM)dXM = A>

whereA was defined in(11).
The second ternflgis

= fE{f;(X) = 1s(0F2W( X ) s (X ) X,
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in which
2
. aZ(X) 1
E{fs(x) — fs(x)}2 = {ro (X)) oZh%2}2 + | K[3™ m + o<h4 + W)

according to Theorem 1 and especially equati®n Thus

4

Kh4 K 2m
Iy = UTfrafs(x)w(xM);Ls(xM)dxM + w—l;mf SE;()) W(Xp ) (X ) A%y

1
+ 0<h4 + W)
= C(h)J SOOW (X)) e s(Xpr ) Ay

1
+O<h4+ $>

In summary

1s? - .~ .
g 20 E[{YS+TS - fS(XS+TS)}2W( XS+TSM)]

=A+c(h) = 2 r2s(OW(Xp) (X ) Xy

o 2(x)
s(X)

+b(h) 2 2 W(Xn) ps(Xp) dXy + 0<h4 + i)

hm
which yields Theorem .3

For establishing Theorem dne applies similar techniques to the cases wKetoes
not include all correct lags and when it includes theorrect plud additional onesSee
Tschernig and Yang200Q Sec 3), for details |

To prove Theorem 5 one first decomposes the estimator into two: parts

Ns

2 W(XS+TS M ) 65( XS‘FTS’ h)

s P+ P,
b= — -— , (A5)
E W(XS+TSM) - 2 W(XS+TSM)
T=im,s nS T=im,s
in which

Ns

1
P=— 2 W(XS+7SM)e;—{(ZEWZD)ilZEW}(XSJrTS)Ev

S 7=im,s

Ns

1
P2: — Z W(XS+TSM)e;r{(ZBWZD)ilZSW}(XSﬁ»TS)fr

S 7=im,s
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and here one denotes by = (0s(Xsi,5)€si-s)T the innovation vector and =
(f(Xssrs) + be)T the prediction vectolUsing the mixing conditionssimilar to Hardle
et al (1998, one has

1 5
LS Wierraw) = [ a0 WO (14 0,D)
S 7=iu,s

and so Theorem 5 is proved by analyziRgand P, using the following lemmas

The following auxiliary lemma is a standard result

LEMMA A .1. Under conditions (A1)—(A4), as B 0, nh™ — oo, for any compact
setkC

supl(ZEWZp) " 1(x) — 351 (x)| =5 0,
Xex

where
[ o) —pot(x) —pot(x) O1m
ot () w0+ ot .. pot(x) Otxm
spi = | : : : :
—po (%) pot(x) e st (0 + g t(x) Otxm
Omx1 Omx1 Omx1 Sill"il(x)(rKizlm
o H(X) —mo () Lix(s 1) O1xm
= | o (0 Ls 1x1 diagf(ps(X) 11 + o (%) Ls pxs- Ors-1)%m
B O O (s-1) Stu Tt (X mo?

Proof. Observe that each element of the matig WZ,)(x) can be written as

S-1 nNs

> > Zi Zy Kp(Xgy 75 — %), ihLi=1...m+S

S=07=iyms

Because for each season a stationary densif) exists one obtains for thes sums
using the mixing property

Su(x)  pa(¥) o ps (X O1xm
ma(X)  pa(X) 0 O1xcm
ZWZo) 0 = | P F (st 0,(D)
Hs1(X) 0 v Mg a(X) O1xm
Omx1 Omx1 - Omx1 Su(X) ol

uniformly over the compact sét. It is straightforward to verify the inversion |

Note in particularbecause the random vectéyly,x, ,,)~o; has a density with com-
pact support by AssumptiofA4), Lemma Al applies to its supporC. To analyseP;,
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one considers the effect of weighted averaging{(@}, WZ;) 1ZIW}(X,, ,s). Denote
xum by (X, X{;), wherexy, corresponds to the largest lag vectand define

a0 = [ WOx R a0 )0 (A6)

as the weighted density at The next lemma is important
LEMMA A.2. Ash— 0, nh™ — oo,

Ns

1
— > W(Xe,sm){(ZEWZ5) T ZE W} (X, ,s)

Nv,s 7=ius

= [(55 ZBWH 0 a0 6{L + 0, (D).

Proof. Using the mixing propertyone has

103
P 2 W(Xs+rs|v|){(ZBWZD)_le)W}(Xsws)
Ny, s r=iy.s

= [ WO HZEWZo) ZEWH (0 5 iy 1+ 0, 1)

= [1ZEWZ0) 2 ZEW) 00 X (Wi 5, ) ity 1+ 0,0}

Integrating first inx;, as in(A.6) and then applying Lemma.A gives the formula in the
lemma .

LEMMA A 3. As h— 0, nh™ — oo, \/NgP; = N(0,02) where
1 1
o2 = f + 2 () a2(x)dx.
° {MS(X) Mo(X)}MSW 3
Proof. By definition

Ns

Pr=— > W(Xs,gm) e {(ZEWZ) 1 ZEWH X, )€

Nsr2iys

Applying Lemma A2, one has

Py = [ 1S5 ZBWI 00 s (01 + 0,(1)

o] L S 0 0000 98 0 + 0,
ns J P 0 o) '

T=ims

1 w 0s
- = f HyulX) > Y Kn(Xegirs = X 0s(Xgirs) g rsdX{1+ 0,(1)}

NsJ 1o(X) oog=s 1 riis

1 Ms,w(x) >
+ 2 _ 2 Kh(xs'+TS - X) Us(xs’+rs)gs’+73dx{1 + Op(l)}7
1=s'=S-1,s'#s Ng /'LO(X) T=ius



1446 LIJIAN YANG AND ROLF TSCHERNIG

which, by cancellation and changes of variableecomes

l i I‘LSW(XS+TS)

X 1+o0,(1
Ng s I‘LS(XS+TS) 0-5( 5+TS)§S+TS{ p( )}

1 & HswlXes)
e (ke TN 0,1

By a martingale central limit theorefiiptser and Shirjagv198Q Corollary 6, \/n—SPl
is asymptotically normal with variance

1
f 200 HO MU0 (0 dx + J 10X 2 () T2(x)dx

m(x)

=J 1 + ! 12,(X)o2(x)dx= o2
me(X)  mo(x) [TEMTE s’

which completes the proof n
LEMMA A 4. As h— 0, nh™ — oo,

Ns

1
P2_ _ 2 W(X5+TSM)b5: Op(h4)

S 7=iuw s
Proof. By definition

Ns

1
P - z W(XS+TSM)b

Ns .= im,s

Ns

1
= — 2 W(Xs,sm)[{(ZEWZ) FZEWH( X, ,5) — bi].

S 7=in s

Using the fact thael{(Zi WZ,) 1z W}Z, ey = 1 or 0 depending on whether= s
the preceding expression equals

ne > W(XS+TSM)eS{(ZTWZD) LZEWH (Xgir)f — bsZp(Xsirs) s — FZp(Xsirs) €0}
S 7=iu s

1
- E W(XS+TSM)e;r{(ZgWZD)ilng}(XS+TS){VTfZD(XS+TS)(eS+l’"'7eS+m)}a

S 7=iu s

which is

[fesT{EBlZEW}(X)MSW(X){f — bsZp(X)es — fZp(X)epdx

- fe;r{EDlZBW}(X)Msw(X){VTfZD(X)(eSJrl’""eS+m)}dX:|{1+ 0,(1)}
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or approximately

1 1 1 0s
{;Sfﬂsw(x){m + m} E Kh(Xs+rS_x)

XA (Xaars) = F(X) = VTF(X) (Xgsrs — X)}dX
1 psw(X) >

- - =27 Kn(Xe srs —
nsf Ho(X) ogszs_“:EaM,s WX

X A{f(Xgir8) = F(X) = VT (X) (Xg s — X)}dX

T R L

1=s'=S-1,5'#s Ns /J“O(X) T=ius

XA (Xgirs) = F(X) = VIF(X) (Xg s — X)}dX],

which, after cancellationbecomes

Ns

L[ saul®
[n_sf e 2 K0ars =) =100 = T (X rs = X

1 sw(X) s
o) S K (Xos = X){F(Xog) — F(X) = TTH(X) (X, — )}Ix
Ns mo(X) S s

X {1+ 0,(D)}.

Now for the second term in the preceding expressia the sum of the 0-seaspn

1 sw(®)
n_sf L(x) L2 Kns =0T (Xes) =100 = VT 00 (X5 = 20}lx

s,w( )
:f Haw 2 Kn(y =) {f(y) = f(x) = VIE(x)(y = x)}dxuo(y)dy{1 + 0,(1)}
Ho(X)

y-x=hu f ’;:Z(X);) fK(u){f(x+ hu) — f(x) — hvTF (%) ubdxgg (X + hu)

X du{1+ 0,(1)}
7 h202

2

f,u,sw(x)Tr{sz(x)}dx+ Op(h?).
Doing the same thing for theseasonand taking the differenc®ne arrives at the con-
clusion of the lemma u

Proof of Theorem 5. Putting together equatioi\.5) and Lemmas /A8 and A4 proves
the theorem n
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Proof of Theorem 6. This follows by examining the proofs of Lemmas3fand A4.
Lemma A3 would still hold in this situationwhereas Lemma 4 has to be modified
Specifically the termP, is

J/J“aw(x/)st(X)dX_J/Jvaw(x/)foL(X)dX'i_ Op(hz)
or

JNSW(X’){%(X) — 5" (x)}dx+ Oy(h?) = J‘{f?(x) = fg" OIW (X ) (X ) dxy
+ Op(h?)

according to definition(A.6). See Tschernig and Yan@000 for more details about
nonvanishing bias in underfitting |

Proof of Theorem 7. This theorem is an obvious consequence of the central limit
theorem for mixing processésee Doukhan1994 Theorem 1p. 46). |



