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Non- or semiparametric estimation and lag selection methods are proposed for
three seasonal nonlinear autoregressive models of varying seasonal flexibility+ All
procedures are based on either local constant or local linear estimation+ For the
semiparametric models, after preliminary estimation of the seasonal parameters,
the function estimation and lag selection are the same as nonparametric estima-
tion and lag selection for standard models+ A Monte Carlo study demonstrates
good performance of all three methods+ The semiparametric methods are applied
to German real gross national product and UK public investment data+ For these
series our procedures provide evidence of nonlinear dynamics+

1. INTRODUCTION

In nonlinear time series analysis, nonparametric estimators provide great flex-
ibility because no parametric function class must be chosen a priori+ On the
other hand, most existing results on nonparametric estimators require the data
generating process to be stationary, a condition often violated by economic time
series+ Although the most common source of nonstationarity is trends, seasonal
patterns also play an important role+

The flexibility of nonparametric techniques has not been available for sea-
sonal time series, because of a lack of nonparametric autoregression models
that incorporate seasonal nonstationarity+ A popular approach for removing sea-
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sonal nonstationarity is to use seasonally adjusted data+ This, however, is not
justified for nonlinear modeling for at least four reasons+ First, the effect of
such seasonal filters on data exhibiting nonlinearities is unclear as virtually all
seasonal adjustment procedures have been designed for linear processes+ Sec-
ond, Ghysels, Granger, and Siklos~1996! show that some of these procedures
such as X-11 involve nonlinear transformations that may change the properties
of the original data+ Third, data adjusted with most model-based seasonal ad-
justment procedures and procedures with model-based interpretation are non-
invertible+ Such procedures include those used by official agencies+ See, e+g+,
Maravall ~1995! for details+1 Thus, an additional approximation error is intro-
duced if finite-order AR models, either parametric or nonparametric, are used+
Finally, using seasonally adjusted data is misleading if a useful orthogonal de-
composition of the original data into a trend, a seasonal, and an irregular com-
ponent does not exist+ See the examples in the work by Franses~1996, Ch+ 6!,
who advocates periodic linear autoregressive models with autoregression pa-
rameters that vary with the seasons+ Therefore, standard nonparametric models
are not appropriate for seasonally adjusted data+

In this paper we consider three seasonal nonlinear autoregressive models of
varying seasonal flexibility+ The most general model allows for changing con-
ditional means across seasons and generalizes periodic autoregressive models+
For this model, which provides a very flexible way to model seasonality with-
out imposing much structure, we suggest nonparametric estimation and lag se-
lection methods and state some asymptotic properties+

This generality has its price+ The effective sample size of the nonparametric
procedures is given by the size of a single season+ This model may therefore be
less useful for small data sets typical in macroeconomics+ For such a task we
propose a less flexible seasonal nonlinear model whose seasonal regression func-
tions are equal to additive constants+ We suggest three semiparametric estima-
tors that are shown to have the standard effective sample size+

The same is shown for the semiparametric estimator of an alternative sea-
sonal process that can be decomposed into a nonseasonal nonlinear autoregres-
sive component and additive deterministic seasonal shifts+ These seasonal shifts
can be used for seasonally adjusting data+ An alternative model is analyzed by
Burman and Shumway~1998!, who allow the seasonal shifts to be multiplied
by a nonlinear function of time, however, at the cost of assuming the nonsea-
sonal component to be linear+ Orbe, Ferreira, and Rodriguez-Poo~2000! de-
velop nonparametric estimators of time-varying coefficients under seasonal
constraints+

In practice, the relevant lags of the autoregression are unknown, and a lag
selection procedure is needed+ We therefore extend the final prediction error
methods of Tschernig and Yang~2000! to the seasonal models and show that
the probability of selecting the correct lags approaches one asymptotically+ Our
simulation study shows that the proposed seasonal lag selection methods work
in small samples+ Moreover, we find that the non- and semiparametric proce-
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dures for nonlinear processes outperform linear methods in terms of the predic-
tion power if the processes are nonlinear+ This holds for prediction based on
both the correct or the selected set of lags+

To illustrate the semiparametric procedures, we model two macroeconomic
time series, German real gross national product~GNP! and UK public invest-
ment, for which series we find evidence of nonlinear dynamics+ For the former,
which exhibits stronger nonlinearity, the semiparametric procedure forecasts sub-
stantially better+

It is well known that multivariate function estimation suffers from inaccu-
racy, commonly referred to as the “curse of dimensionality+” This nuisance can
only be reduced by imposing special restrictions on a general multivariate func-
tion to obtain a less flexible structure+ Such examples include the generalized
additive structure and varying-coefficient structure proposed by Hastie and Tib-
shirani ~1990, 1993! and in time series analysis, the additive structure of the
conditional mean in Chen and Tsay~1993!, Tjøstheim and Auestad~1994a!,
Masry and Tjøstheim~1996!, and Yang~2000! or the multiplicative structure of
the conditional volatility in Yang, Härdle, and Nielsen~1999!+ Further research
could provide guidance on how such functional restrictions should be imposed
on the seasonal models we propose here+

In contrast, lag selection that has to precede any function estimation suffers
less from the curse of dimensionality+ This robustness of nonparametric lag se-
lection can be attributed to its discrete nature and has already been observed
for nonseasonal AR processes in Auestad and Tjøstheim~1990! and Tjøstheim
and Auestad~1994b! and more recently in Tschernig and Yang~2000!+ These
authors suggest the idea of “de-linking” lag selection from function estimation,
so that the relevant lags may be first selected using a very general nonparamet-
ric procedure, after which appropriate structures may be imposed on the se-
lected variables for improved function estimation+ For example, the multiplicative
modeling of the conditional volatility function in Yang et al+ ~1999! was car-
ried out not on arbitrary lagged variables but on those selected according to the
nonparametric lag selection method of Tschernig and Yang~2000!+ In our Monte
Carlo study the robustness of lag selection is also corroborated for seasonal
processes+ The identification rates of non- or semiparametric methods for the
correct lags are about 50%, whereas those of linear methods may be close to
zero~see the correct identification rates represented by dark rectangles in Fig-
ures 5 and 6!+ Therefore we regard the lag selection methods proposed in this
paper as preliminary steps for imposing additive or other structures on seasonal
autoregression+ As such, they are quite satisfactory+

As a final remark we note that the three models only cover various kinds of
deterministic seasonality+ Nonstationarity due to stochastic seasonality has to
be removed prior to the non- or semiparametric modeling~ just like trends!+ To
avoid overdifferencing and thus a noninvertible series one may use the HEGY
test~Hylleberg, Engle, Granger, and Yoo, 1990!+

The paper is organized as follows+ In the next section we discuss three sea-
sonal nonlinear autoregressive models with different kinds of seasonal flexibil-
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ity+ Section 3 presents nonparametric estimation and lag selection for the general
seasonal nonlinear autoregressive process+ In Section 4 we present semipara-
metric estimators for the two restricted seasonal models+ Section 5 describes
details of implementing the various procedures+ The results of the Monte Carlo
study are presented in Section 6+ The empirical applications are contained in
Section 7, and Section 8 concludes+ All assumptions, lemmas, and proofs are in
the Appendix+ JMULTI, which is a menu-driven software based on GAUSS,
contains almost all procedures that are presented in this paper+ It is available
from http:00ise+wiwi +hu-berlin+de0oekonometrie0+

2. SEASONAL NONLINEAR AUTOREGRESSIONS

Assume now that the process$Yt %t$0 has a stationary distribution for each of
theSseasons+ It will often be convenient to write the time indext ast 5 s1 St
wheres 5 0,1, + + + ,S2 1 denotes the season andt 5 0,1, + + + represents a new
time index+ Throughout this paper, we consider a realization$Yt %t50

n of sample
sizen 1 1+

The most general seasonal process that we consider is the seasonal nonlinear
autoregressive~SNAR! model given by

Ys1tS 5 fs~Xs1tS! 1 ss~Xs1tS!js1tS, (1)

whereXt 5 ~Yt2i1,Yt2i2, + + + ,Yt2im!T is the vector of all the correct lagged val-
ues, i1 , {{{ , im, and thejt ’s are independent and identically distributed~i+i+d+!
with E~jt ! 5 0, E~jt

2! 5 1, t 5 s 1 tS5 im, im 1 1, + + + , and they are indepen-
dent of the start-up conditionXim+ Note that the conditional volatility functions
ss~{! may depend on a subvector ofXs1tS or even be constant+ The case in
which ss~{! depends on lags not infs~{! is beyond the scope of this paper+ In
contrast to the standard nonlinear autoregression model the regression func-
tions $ fs%s50

S21 here are allowed to vary with theS seasons+ This is a nonlinear
generalization of the periodic AR~PAR! model

Ys1tS 5 bs 1 (
i51

p

aisYs1tS2i 1 es1tS (2)

~see, e+g+, Franses, 1996, p+ 93; Lütkepohl, 1991, p+ 391!+ For this reason, one
can also view the SNAR model as a periodic nonlinear autoregression+ The non-
parametric estimation of theS regression functionsfs~{! and selection of the
lags i1 , {{{ , im will be discussed in Section 3+ Note thatim can be much
larger thanm+ For example, the selected lag vector for the German real GDP is
given by~1,4,7!, so m 5 3, im 5 7 ~see Table 4!+

We do not allow the set of lagsi1 , {{{ , im to vary with the seasons+ In the
latter case the task of estimation and lag selection has to be carried out sepa-
rately for each of theS data sets$~Xs1tS,Ys1tS!%t50

@n0S# ,s 5 0,1, + + + ,S2 1 using
methods for nonseasonal models+ One therefore can directly apply, e+g+, the pro-
cedure of Tschernig and Yang~2000!+ Pooling the information for all seasons is

SEASONAL NONLINEAR AUTOREGRESSION MODEL IDENTIFICATION 1411



only useful if some features of the seasonal process, e+g+, the lags, are the same
across seasons+

As will be seen in Section 3, the effective sample size for estimation and lag
selection of model~1! is n0S+ For some macroeconomic applications this may
be too small+ For example, model~1! provides too much flexibility for 30 years
of quarterly data+ One may, however, restrict the seasonal flexibility in the con-
ditional mean functions tofs~{! 5 f ~{! 1 bs, s 5 0,1,2, + + + ,S 2 1 so that the
seasonal variation of the functions between thesth and the 0th season is re-
stricted to the constant shiftsbs+ By definition b0 5 0+ The resulting process,

Ys1tS 5 f ~Xs1tS! 1 bs 1 ss~Xs1tS!js1tS, (3)

is a restricted seasonal nonlinear autoregression+ We call this second model a
seasonal dummy nonlinear autoregressive~SDNAR! model because it is a gen-
eralization of the seasonal dummy linear autoregressive~SDAR! model

Ys1tS 5 bs 1 (
i51

p

ai Ys1tS2i 1 es1tS+ (4)

In Section 4 we show that after estimating the seasonal shiftsbs, the nonpara-
metric functionf ~{! in the SDNAR model~3! can be estimated with an effec-
tive sample size ofn+ The same also holds for lag selection+

Another way of restricting the seasonal nonlinear autoregression model~1!
is to assume that the seasonal process is additively separable into a seasonal
mean shiftds, s 5 0,1+ + + ,S 2 1, and a nonseasonal nonlinear autoregression
$Ut % , i+e+, Ys1tS 5 ds 1 Us1tS+ One may call

Ys1tS 2 ds 5 f ~Ys1tS2i1 2 d$s2i1% , + + + ,Ys1tS2im 2 d$s2im% !

1 s~Ys1tS2i1 2 d$s2i1% , + + + ,Ys1tS2im 2 d$s2im% !js1tS (5)

a seasonal shift nonlinear autoregressive~SHNAR! model+ Here we define
$a% for any integera as the unique integer between 0 andS 2 1 that is in
the same congruence class asa modulo S+ For identifiability, one assumes
that d0 5 0+ This SHNAR model is another way of generalizing the SDAR
model ~4! where the constantsd0, + + + ,dS21 of the linear model are obtained
up to an additive constant via the system of linear equationsbs 5 ds 2

(i51
p ai d$s2i % , s 5 0,1, + + + ,S2 1+
For estimating the seasonal mean shiftsd1, + + + ,dS21 in the SHNAR model

~5!, a simple parametric method is proposed in Section 4 that allows us to es-
timate and analyze the nonseasonal process$Us1tS 5 Ys1tS 2 ds% by standard
nonparametric methods+2 We remark that none of the proposed models allows
the seasonal features to vary with time+ Although this also is possible, it is likely
to provide too much flexibility for typical sample sizes+ Alternatively, one may
restrict the nonseasonal part of the conditional mean function to be linear inXt

but allow the seasonal shift to depend on time~see, e+g+, Burman and Shum-
way, 1998!+
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3. SNAR IDENTIFICATION

Model identification requires two steps: lag selection and estimation+ For the
lag selection procedure presented in Section 3+2 one a priori has to selectM,
which is the largest lag considered in the lag search+ Therefore, we reserve the
first M observations as starting values and for eachM # t # n define the full
lag vectorXt,M 5 ~Yt21, + + + ,Yt2M !T+ Note that the candidate lag vectorXt is a
subvector ofXt,M + In the sequel, x andxM denote values ofXt andXt,M , respec-
tively+ If one is only concerned with estimation and if the correct lag vectorXt

is known, the largest lagM is set to the largest lagim contained in the lag
vector Xt + We need some additional notation+ Let iM,S be the smallest integer
equal to or greater thanM0S, nS 5 @~n 1 1!0S# 2 1, andnM,S 5 nS 1 1 2 iM,S
and for eachs5 0,1, + + + ,S2 1, denoteYs 5 ~Ys1iM,SS,Ys1~iM,S11!S, + + + ,Ys1nSS!T+

3.1. Estimation

For anyx [ IRm, the Nadaraya–Watson estimateZf1,s~x! and local linear esti-
mate Zf2,s~x! of the seasonal functionsfs~x! in the SNAR model~1! are given by

Zfa,s~x! 5 Zfa,s~x,h! 5 ea
T$Za,s

T ~x!Ws~x!Za,s~x!%21Za,s
T ~x!Ws~x!Ys,

a 5 1,2, (6)

in which

Z1,s~x! 5 ~1 J 1!13nM,S

T , Z2,s~x! 5 1
1 J 1

Xs1SiM,S 2 x

h
J

Xs1SnS 2 x

h
2

T

,

e1 5 1, e2 5 ~1,013m!T, Ws~x! 5 diagH 1

nM,S
Kh~Xs1tS 2 x!J

t5iM,S

nS

,

whereK : IR1 r IR1 is a symmetric probability density with compact support
and

Kh~u! 5
1

hm )
j51

m

KSuj

h
D

for u [ IRm; h 5 hn is a positive number~bandwidth!, h r 0, nhm r ` as
n r `+ Further we denote7K722 5 *K 2~u!du, sK

2 5 *K~u!u2du+

THEOREM 1+ Under Assumptions (A1) and (A2) in the Appendix, for
a 5 1,2, as nr `, the estimation bias of the nonparametric estimatesZfa,s~x, h!
is ra,s~x!sK

2h202 where

r1,s~x! 5 Tr $¹2fs~x!% 1
2¹Tms~x!¹fs~x!

ms~x!
, r2,s~x! 5 Tr $¹2fs~x!%, (7)
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whereas the estimation variance is

7K722m
ss

2~x!

ms~x!nM,Shm + (8)

Derivation of these terms for the standard case~S5 1! can be found in Här-
dle, Tsybakov, and Yang~1998!+ The ms~x! in equations~7! and~8! represents
the stationary density of seasons, which exists according to assumption~A1!+
Among many others, Ango Nze~1992! and Cline and Pu~1999! provide sim-
ple conditions to ensure strict stationarity andb-mixing+ These conditions are
extended to seasonal processes by Theorem 2, which follows, and can be checked
for many given processes+ See the example in Section 6+1+

~E1! The errorjt has a density function that is positive everywhere, and so
are the seasonal volatility functionsss

2~{!,s 5 0,1, + + + ,S2 1+

~E2! There exist an integerk $ max~M0S,1!, a constantR . 0, and a matrix
of coefficients~asj!0#s#S21,1#j#kS with all asj $ 0 and max0#s#S21 (j51

kS asj 5
a , 1 such that for 0# s # S2 1,t $ k

E~6Ys1tS6 8Ys1tS21 5 y1, + + + ,Ys1tS2kS5 ykS! # (
j51

kS

asj 6yj 6 (9)

when min1#j#kS6yj 6 $ R+

THEOREM 2+ Under conditions (E1) and (E2), the process Vt 5
~YtS,YtS21, + + + ,YtS2kS11!T, t 5 k, k 1 1, + + + is geometrically ergodic. If the ini-
tial Vk has a stationary distribution, then the process is both strictly stationary
and geometricallyb-mixing.

3.2. Lag Selection

We now adapt lag selection procedures for standard nonlinear autoregressive
time series to the SNAR model~1!+ For lag selection in the standard case with
S5 1 Auestad and Tjøstheim~1990! and Tjøstheim and Auestad~1994b! intro-
duce nonparametric versions of the final prediction error~FPE!, which were
analyzed theoretically and significantly improved upon by Tschernig and Yang
~2000!+ For seasonal time series we define the FPE of the estimates$ Zfs%s50

S21 of
$ fs%s50

S21 as the following functional:

FPE~$ Zfs%s50
S21! 5

1

S (
s50

S21

E @$Y̆s1tS 2 Zfs~ X̆s1tS!%2w~ X̆s1tS,M !# ,

wherew denotes a weight function and$Y̆t % is another series with exactly the
same distribution as$Yt % but independent of$Yt % + Because Zfa,s~x! and therefore
the FPE depends primarily onh we denote:

FPEa~h! 5 FPE~$ Zfa,s%s50
S21!+
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The next theorem extends Theorem 2+1 in Tschernig and Yang~2000! to SNAR
processes+ Note that in this theorem and throughout this paper, we drop the lag
reference and denote all seasonal densities byms~xM ! or ms~x!+

THEOREM 3+ Under Assumptions (A1)–(A6), for a5 1,2, as nr ` the
FPEbased on the correct set of lags is

FPEa~h! 5 AFPEa~h! 1 o$h4 1 nM,S
21 h2m%,

in which the asymptoticFPEs(AFPEs) are

AFPEa~h! 5 A 1 b~h!B 1 c~h!Ca, (10)

where

A 5
1

S (
s50

S21 Ems~xM !ss
2~x!w~xM !dxM , (11)

B 5
1

S (
s50

S21 Ems~xM !ss
2~x!0ms~x!w~xM !dxM , (12)

Ca 5
1

S (
s50

S21 Era,s
2 ~x!ms~xM !w~xM !dxM , (13)

and where

b~h! 5 7K722mnM,S
21 h2m, c~h! 5 sK

4h404+

Solving the variance-bias trade-off in~10! allows one to derive an asymptot-
ically optimal bandwidth

ha,opt 5 $m7K722mBnM,S
21 Ca

21sK
24%10~m14!, (14)

which can be estimated by plug-in methods+ See Section 5 for details+
To estimate the asymptotic FPEs the following estimates ofA and B are

needed:

ZA~h! 5
1

S (
s50

S21 1

nM,S
(

t5iM,S

nS

$Ys1tS 2 Zfa,s~Xs1tS, h!%2w~Xs1tS,M !,

ZB~hB! 5
1

S (
s50

S21 1

nM,S
(

t5iM,S

nS $Ys1tS 2 Zfa,s~Xs1tS, hB,s!%
2w~Xs1tS,M !

[ms~Xs1tS, hB,s!
,

in which the bandwidthsh andhB 5 ~hB,0, + + + , hB,S21!T are all of the same or-
dernM,S

210~m14! as the optimal bandwidthha,opt and [ms is a kernel estimator of the
densityms using bandwidthhB,s+
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BecauseA is the dominant term in the AFPE expressions~10!, one takes into
account the bias of its estimatorZA~h! and inserts the bias corrected estimate
into ~10!+ This delivers the following estimator forAFPEa~h!:

AFPEa 5 ZA~ha,opt! 1 2K~0!mnM,S
21 ha,opt

2m ZB~hB!+ (15)

From both asymptotic consideration and simulation results, Tschernig and Yang
~2000! conclude that when usingAFPEa, the probability of including extra lags
in addition to the correct ones is larger than that of missing some of the correct
ones+ In other words, overfitting is more likely than underfitting+ Based on this,
Tschernig and Yang propose a corrected AFPE~CAFPE! by multiplying the
AFPEa with a penalizing factor for overfitting and find in simulations that this
corrected AFPE selects lags correctly much more often than the uncorrected
AFPE+ Similar to equation~4+1!, p+ 466, in Tschernig and Yang~2000!, the
correctedAFPEas for the seasonal case are given by

CAFPEa 5 AFPEa$11 mnM,S
240~m14! %+ (16)

Whatever FPE criterion one wants to use, one selects the subset$ Zi1, + + + , Zi [m% with
the smallest~C!AFPEa

' where ~C!AFPEa
' denotes the quantities according to

~15! or ~16! for every subset$i1
' , + + + , im'

' % of $1, + + + ,M % +
As in Tschernig and Yang~2000!, one can show that the following theorem

holds+

THEOREM 4+ Under Assumptions (A1)–(A6) the lag selection procedure
based on either (15) or (16) consistently selects the correct lags, i.e., ifZi1, + + + , Zi [m
are the selected lags, then as nr `

P@ [m 5 m, Zi j 5 i j , j 5 1,2, + + + ,m# r 1+

Note that if the true process is linear, i+e+, if all functions fs,s 5 0, + + + ,S2 1
are linear, then all ther2,s~x! [ 0 by equation~7!, which implies by~13! that
C2 5 0 for the local linear CAFPE+ This causes assumption~A6! to fail, and a
variance-bias trade-off is no longer available+ As noted in Tschernig and Yang
~2000!, the local linear CAFPE becomes inconsistent in this case, but the alter-
native local constant CAFPE remains consistent+ Despite this, we suggest using
the local linear CAFPE as it is faster to compute and also has performed quite
satisfactorily for linear processes in our Monte Carlo study in Section 6+

4. SDNAR AND SHNAR IDENTIFICATION

Although the function estimators for the SNAR model discussed in the previ-
ous section provide ample seasonal and nonlinear flexibility, it is important to
realize that they use onlynM,S observations, a number much smaller thann and
evenn0S+ This may render estimation of the seasonal nonlinear autoregression
~1! difficult if the sample sizen is already small+ In this section we develop
semiparametric estimators for the seasonal dummy nonlinear autoregression~3!
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and the seasonal shift nonlinear autoregression~5!+ In both models, the param-
eters can be estimated with a faster rate of convergence and then effectively
“removed” so that the regression function becomes the same for all seasons
and alln 2 M observations can be used for estimation and lag selection+ There-
fore the standard lag selection methods of Tschernig and Yang~2000! can be
applied+

4.1. Estimation of the SDNAR Model

Note that for the SDNAR model~3! one has

bs 5 fs~Xs1tS! 2 f0~Xs1tS!+ (17)

Based on~17! we will present the following three estimation methods for
bs that, when the correct lags are used, all exhibit a rate of convergence
Op~n240~m14! 1 n2102!+ This rate is faster than the rateOp~n220~m14! ! for func-
tion estimation+

The full dummy method.For seasonss' 5 1, + + + ,S2 1, define the dummy
variableDs1tS,s' , which equals 1 ifs 5 s' and 0 otherwise+ This allows us to
rewrite ~3! as

Yt 5 f ~Xt ! 1 (
s51

S21

bsDt,s 1 s~Xt !jt , t 5 iM,SS, + + + , n+

One can then jointly estimate the seasonal parameters and the function nonpara-
metrically+ For the seasonal parametersbs one obtains the local estimators atx:

Zbs~x, h! 5 es
T$~ZD

T WZD !21ZD
T W%~x!Y, (18)

wherees denotes them 1 S vector whosesth element is 1 and all other ele-
ments 0, s 5 1, + + + ,S2 1,

ZD~x! 5 1
1 J 1

DiM,SS,1 J Dn1

I I I

DiM,SS,S21 J Dn,S21

XiM,SS 2 x

h
J

Xn 2 x

h

2
T

,

W~x! 5 diagH Kh~Xt 2 x!

nM,S
J

t5iM,SS

n

,
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and Y 5 ~YiM,S,YiM,S11, + + + ,Yn!T+ One then defines the weighted average
estimator

Nbs 5

(
t5iM,S

nS

w~Xs1tS,M ! Zbs~Xs1tS, h!

(
t5iM,S

nS

w~Xs1tS,M !

, (19)

wherew~{! is the same weight function as used in the FPE+ We next establish
the asymptotic behavior ofNbs+

THEOREM 5+ Under Assumptions (A1)–(A5), for any1 # s # S 2 1,
as nr `, h 5 bnS

210~m14! , the estimator Nbs based on the correct set of lags
satisfies

Nbs 2 bs 5 Op~h4 1 n2102!+

The proof of this theorem rests on two lemmas that can be found in the Ap-
pendix+ Lemma A+4 shows that the usual bias of orderh2 is canceled by the
differencing of seasons 0 ands, whereas Lemma A+3 states that the usual vari-
ance of order~nh!21 gets smoothed out to ordern21 as a result of the averag-
ing of Zbs~Xs1tS, h!+ Therefore, if one subtracts Nbs from Ys for all s 5 1, + + + ,
S2 1 to obtain EYs 5 Ys 2 Nbs, then by the faster convergence of the estimator
~19! one has

EYs1tS 5 f ~Xs1tS! 1 s~Xs1tS!js1tS 1 Op~n240~m14! 1 n2102!+

Thus, using the adjusted data$~Xt , EYt !%t5M
n , one can estimate the functionf with

an effective sample sizen as in the nonseasonal case+

Two alternative procedures for the estimation of bs+ To obtain the first al-
ternative one may include in the “regressors matrix” only the dummy of season
s instead of all dummies, i+e+,

Zs,D~x! 5 1
1 J 1

DiM,SS,s J Dn,s

XiM,SS 2 x

h
J

Xn 2 x

h
2

T

and then define the local estimator ofbs at x as

Zbs~x, h! 5 e2
T$~Zs,D

T WZs,D !21Zs,D
T W%~x!Y, s5 1, + + + ,S2 1, (20)

in which e2 is them 1 2 vector whose second element is 1 and all other ele-
ments 0+ One then definesNbs by the averaging formula~19! using~20!+We call
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this approach the “partial dummy method,” in contrast to the “full dummy
method” based on~18!+

The second alternative may be termed the “two estimators method”; namely,
define

Zbs~x, h! 5 Zf2,s~x, h! 2 Zf2,0~x, h!, (21)

where Zf2,s~x, h! is the local linear estimator as defined in~6!+ In this case one
inserts~21! into the averaging formula~19! to obtain Nbs+

For both approaches the cancellation-and-smooth-out effect of Theorem 5
remains valid if Nbs is the average ofZbs~Xs1tS, h!, t 5 iM,S, + + + , nS, defined by
either~20! or ~21!+ The relative merit of these two methods is simplicity, whereas
the full dummy method is more robust+

4.2. Lag Selection in the SDNAR Model

Because one can estimate the functionf with an effective sample sizen using
the adjusted data$~Xt , EYt !%t5M

n , one can treat the adjusted data as being nonsea-
sonal+ This suggests applying the local constant or local linear~C!AFPE lag
selection criteria for the standard nonlinear autoregression as in Tschernig and
Yang ~2000!+ These estimators are obtained by settingSequal to 1 in equations
~15! and~16! and taking into account that the process$Xt %t5M

n can be treated as
if it has the average seasonal densityTm~x! 5 10S(s50

S21 ms~x!+
However, before the nonseasonal~C!AFPE criteria can be used one has to

check how the seasonal parameter estimator~19! for obtaining the adjusted data
behaves if an incorrect set of lags is used+ If one uses a set of lags that overfits,
i +e+, if the set includes all the lagsi1, + + + , im and more, then one still has
Nbs
' 2 bs 5 Op~h '4 1 n2102!+ This can be seen by examining the proof of Theo-

rem 5 in the Appendix+
The case of underfitting is slightly more complicated+ For simplicity, sup-

pose lagsi1
' , + + + , im'

' are used where$i1
' , + + + , im'

' % is a proper subset of$i1, + + + , im% +
Denote byx ' 5 ~xi1

' , + + + , xim'
' !T the variable vector corresponding to the lags,

andx 5 ~x ', x ''!+ Further, denote for each seasons5 0,1, + + + ,S2 1 the discrep-
ancy betweenf ~x! and its conditional expectation onx ' as

fs
'~x! 5 f ~x! 2 ms~x ' !21E f ~x ',u'' !ms~x ',u'' !du'' 5 f ~x! 2 Es$ f ~x!6x ' %+

We now assume that every functionfs
'~x! has at least one nonzero point in the

interior of the support ofw, and hence for each season, the squared projection
error into the submodel is positive+ This is satisfied by simply enlarging the
support ofw so that its interior includes at least one nonzero point from each
fs

'~x!, which is easy as all thefs
'~x! ’s are nonzero functions on the support

of ms+
The following theorem is a refined version of Theorem 5+
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THEOREM 6+ Under Assumptions (A1)–(A5), for any underfitting model and
1 # s # S2 1, as nr `, h ' 5 bnS

210~m'14! ,

Nbs
'2 bs 5E$ fs

'~x! 2 f0
'~x!%w~xM !ms~xM !dxM 1 Op~h '2!+

So the estimatesNbs approximate the parametersbs to the order ofh4 1
n2102 5 n240~m14! 1 n2102, which is higher than the ordern220~m14! of the
function estimates, provided all the correct lags are used in the computation,
whereas the bias would be nonvanishing if the lags underfit+ In the latter case
the estimation off ~{! by the adjusted data$~Xt

' , EYt
'!%t5M

n will have a nonvan-
ishing bias, as in the case of the standard autoregression model, plus the non-
zero bias introduced by the estimation of thebs’s+ One then faces the same
situation as in Tschernig and Yang~2000! because the~C!AFPEs then ob-
tained will be larger than the true prediction error by a positive constant up to
higher order terms+ One therefore can select the lags based on~C!AFPE for
each set of lags after the data are adjusted by the estimated seasonal param-
eters based on that set+ Therefore these~C!AFPEs have the same properties as
in Tschernig and Yang~2000!+

4.3. SHNAR Model

The seasonal shift model~5! is easier to analyze than the seasonal dummy model
~3!+ In this case, Us1tS 5 Ys1tS 2 ds, s5 0, + + + ,S2 1,t 5 0,1, + + + , is a station-
ary process that satisfies

Us1tS 5 f ~Us1tS2i1, + + + ,Us1tS2im! 1 s~Us1tS2i1, + + + ,Us1tS2im!js1tS+

Hence, one defines FUs 5 Ys 2 Zds as a substitute ofUs, where Zds 5
nM,S

21 (t5iM,S
nS ~Ys1tS 2 YtS! is the estimatedsth mean shift, for all s 5 1, + + + ,

S2 1+ This is based on the following theorem+

THEOREM 7+ Under Assumptions (A1'), (A2'), (A3), and (A4')–(A6') in the
Appendix, and assuming that theSHNAR model (5) is true,

Mn~ Zds 2 ds! r N~0,Sss
2!

for all s 5 1, + + + ,S 2 1, where ss
2 5 E~Ys 2 Y0 2 ds!

2 1 2(t51
` E~Ys 2

Y0 2 ds!~Ys1tS 2 YtS 2 ds!.

HenceUt 2 ZUt 5 Op~n2102! for all t 5 M, + + + , n+ One thus can use the sea-
sonally adjusted data$ ZUt %t5M

n as a substitute for$Ut %t5M
n for estimatingf ~{!+

The same applies to lag selection; hence one applies the AFPE and CAFPE
criteria of Tschernig and Yang~2000! to the process$ ZUt %t5M

n to determine the
lags+

In the presence of nonlinearities the SDNAR and SHNAR model are mutu-
ally exclusive+ Therefore, one may choose for any given data set the model
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with the smaller CAFPE because the prediction error of a given model indi-
cates the departure of the data set from the imposed model structure+

5. IMPLEMENTATION

In this section we describe how to estimate the unknown quantitiesB andCa,
a 5 2, needed for the plug-in optimal bandwidth~14! and the CAFPEs of the
SNAR model and also of its restricted SDNAR version+ Only local linear~a5 2!
procedures are implemented, as we want to avoid the complicated bias terms of
local constant procedures~a 5 1!+ We use the Gaussian kernel for all nonpara-
metric estimates+ For all procedures, the weight functionw~x! is the indicator
function on the range of the observed data+ For robustification, 5% of those
observations whose densities are the lowest are screened off, and leave-one-out
features are implemented for all estimations+

5.1. SNAR Model

To estimate the seasonal densitiesms in ZB~hB!, we use the rule-of-thumb band-
width of Silverman~1986, equation~4+14!, Table 4+1, pp+ 86–87! hB, s 5
h~m 1 2, [ss, nM,S!, s 5 0, + + + ,S2 1 where

h~k,s, n! 5 s$40k%10~k12!n210~k12!

and [ss 5 $) j51
m MVar~Ys2i j !%10m denotes the geometric mean of the standard

deviation of the regressors in each season+
The seasonal functionsfs are estimated by local linear estimatorsZf2,s defined

in ~6! with the same bandwidthhB,s+ This simple bandwidth has the appropriate
rate and performs in our small sample experiments nearly as well as the rule-
of-thumb bandwidth of Yang and Tschernig~1999!+

For the estimation of the second derivatives inC2, we use a local quadratic
estimator that excludes all cross derivatives, with a simple bandwidth rulehC,s5
h~m 1 4,3 [ss, nM,S!+ As a simplification of the partial local cubic estimator of
Yang and Tschernig~1999!, this is sufficient for lag selection, which requires
less precision than function estimation+

5.2. SDNAR Model

To obtain the adjustedEYt , t 5 M, + + + , n, the first step is the estimation of sea-
sonal dummies by the full dummy method given by~18! and ~19!+ By Theo-
rem 5, there does not exist the usual bias-variance trade-off that leads to an
optimal bandwidth because the usual bias of orderh2 cancels out+We takehB 5
h~m1 2, [s,SnM,S! with [s 5 $) j51

m MVar~Y2i j !%10m, which has the optimal rate
for function estimation+ For estimating the unknown quantities in the CAFPE
for the adjusted data$~Xt , EYt !%t5M

n we use all specifications of Section 5+1 set-
ting S to 1+
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6. MONTE CARLO STUDY

In this section we document the practical performance of the estimation and
lag selection methods derived for the three seasonal nonlinear autoregressive
models on data of moderate samples+

6.1. Setup

All processes are homoskedastic and fulfill the relevant assumptions in the Ap-
pendix+ We used conditions~E1! and ~E2! of Section 3+1 to obtain geometri-
cally ergodic processes+ To start, in the stationary distribution we generatedn 1
400 observations and discarded the first 400+ Geometric ergodicity ensures con-
vergence to the stationary distribution+ Explicit burn-in times can be computed
using Theorem 12 of Rosenthal~1995! or Theorem 5+1 in the more recent Rob-
erts and Tweedie~1999!, which both provide bounds on the total variation norm+
Both theorems involve lengthy calculations of many constants; hence they are
not carried out for the examples+ Instead we used simulations based on the total
variation norm and found thatn 5 400 is more than sufficient+ In total, we
consider 8 different processes and always allow all lag combinations up to lag
M 5 6+ For every experiment we conductR5 100 replications+3

SNAR processes.To investigate the general identification devices discussed
in Section 3 that can handle SNAR models~1!, we consider one periodic auto-
regression and one seasonal nonlinear autoregressive process, each with two
seasons, 200 observations, and standard normal errors, jt ; N~0,1!, and one
seasonal nonlinear autoregressive process with four seasons, 400 observations,
and standard normal errors:

PAR2+ Periodic autoregressive process~2! of orderp 5 3 with two seasons
and parametersa10 5 0+55, a11 5 20+3, a20 5 a21 5 0, a30 5 20+4, and
a31 5 0+3+

SNAR2+ Seasonal nonlinear autoregressive process of orderp 5 3 with two
seasons:

Yt 5 (
i51

p

aisYt2i 1S(
i51

p

bisYt2iD 1

11 exp$2gs~Yt2l s 2 cs!%
1 jt (22)

with a10 5 0+55, a11 5 0+3, a20 5 a21 5 0, a30 5 0+4, a31 5 0+55 andb10 5
21+1, b11 5 20+6, b20 5 b21 5 0, b30 5 20+8, b31 5 21+1, g0 5 g1 5 3, c0 5
c1 5 0, l0 5 3, and l1 5 1+

SNAR4+ Seasonal nonlinear autoregressive process~22! of orderp 5 2 with
four seasons and parametersa10 5 0+55, a11 5 0+3, a12 5 20+3, a13 5 0+55,
a20 5 0+4, a21 5 0+55, a22 5 20+55, a23 5 20+4 andb10 5 21+1, b11 5 20+6,
b12 5 0+6, b13 5 1+1, b20 5 20+8, b21 5 21+1, b22 5 1+1, b23 5 0+8, g0 5 g1 5
g2 5 g3 5 3, c0 5 c1 5 c2 5 c3 5 0, and l0 5 2, l1 5 1, l2 5 1, l3 5 2+

1422 LIJIAN YANG AND ROLF TSCHERNIG



To make lag selection difficult the PAR2 and SNAR2 processes contain the
nonconsecutive lags 1 and 3+ The two functions in the SNAR2 process were
chosen for their contrasting shape as can be seen from Figures 1a and b, which
display them on the relevant range+ Figure 2 displays the four seasonal func-
tions of the SNAR4 process+

Using elementary techniques one can check that conditions~E1! and ~E2!
are met by all processes in this section+ This is demonstrated for the process

Figure 1. Functions of the SNAR2 process: ~a! for season 1; ~b! for season 2+

Figure 2. Functions of the SNAR4 process: ~a! for season 1; ~b! for season 2; ~c! for
season 3; ~d! for season 4+
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SNAR2+ First, we setM 5 4 andk 5 2+ Becausejt ; N~0,1!, ~E1! is clearly
met+ To check~E2!, notice that foras 5 $1 1 exp@2gs~ ys12t2l s 2 cs!#%21 one
has

E~6Ys12t 6 8Ys12t21 5 y1, + + + ,Ys12t24 5 y4! # (
j51

3

6ajs 1 asbjs66yj 61 E6jt 6

5 (
j51

3

6ajs 1 asbjs66yj 61 C,

whereC 5 ~1YYM2p!*6x6e2x202dx+ Note that as a function ofas, 6ajs 1 asbjs6
is convex; hence

6ajs 1 asbjs6 # ~12 as!6ajs 1 0 3 bjs61 as6ajs 1 1 3 bjs6

5 ~12 as!6ajs61 as6ajs 1 bjs6

5 5
~12 a0!60+5561 a060+552 1+165 0+55 s5 0, j 5 1

~12 a0!6061 a060 2 065 0 s5 0, j 5 2

~12 a0!60+461 a060+4 2 0+865 0+4 s5 0, j 5 3

~12 a1!60+361 a160+3 2 0+665 0+3 s5 1, j 5 1

~12 a1!6061 a160 2 065 0 s5 1, j 5 2

~12 a1!60+5561 a160+552 1+165 0+55 s5 1, j 5 3+

Therefore one has

E~6Ys12t 6 8Ys12t21 5 y1, + + + ,Ys12t24 5 y4! # C 1 H0+556y161 0+46y36 s5 0

0+36y161 0+556y36 s5 1+

Hence if one takes the matrix

~asj!0#s#1,1#j#4 5 S0+551 d02 0 0+4 1 d02 0

0+3 1 d02 0 0+551 d02 0D
for some d [ ~0,0+05!, set R 5 1 1 d21C, and a 5 max0#s#1 (j51

4 asj 5
0+95 1 d, thena , 1 and~9! holds+

SDNAR and SHNAR processes.For the SDAR model~4!, the SDNAR model
~3!, and the SHNAR model~5! we consider the following specifications, all
with 100 observations, four seasons, and standard normal errorsjt +

SDAR+ Seasonal dummy linear autoregression~4! of orderp 5 3 with sea-
sonal parametersb1 5 1, b2 5 0+3, b3 5 20+6 and autoregressive parameters
a1 5 0+3, a2 5 0, anda3 5 0+4+

SDNAR1+ Seasonal dummy nonlinear autoregression

Yt 5 f ~Yt21,Yt22! 1 0+5Dt,1 1 1+5Dt,2 1 0+8Dt,3 1 jt
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with

f ~Yt21,Yt22! 5 20+6Yt21 1 0+2Yt22 1 ~Yt21 2 0+5Yt22!
1

11 exp~25Yt22!
+ (23)

SDNAR2+ Seasonal dummy nonlinear autoregression

Yt 5 20+6Yt21 1 0+2Yt22 1 ~Yt21 2 0+5Yt22!
1

11 exp~22Yt22!

1 Dt,1 1 2Dt,2 1 Dt,3 1 jt +

SDNAR3+ Seasonal dummy nonlinear autoregression

Yt 5
1

11 exp$24~20+051 Yt21 2 3Yt22!%
1 0+3Yt21 1 0+3Yt22

2 0+3Dt,1 2 0+5Dt,2 2 0+1Dt,3 1 M0+1jt +

SHNAR+ Seasonal shift nonlinear autoregression

Yt 2 ds 5 f ~Yt21 2 d$s21% ,Yt22 2 d$s22% ! 1 jt

with f ~{! given by~23! andd1 5 1, d2 5 1+5, d3 5 0+5+

All nonlinear functions were chosen to represent various degrees of smooth-
ness and complexity+ Their plots are displayed in Figures 3a–c+ The seasonal
parameters were selected such that seasonality is substantial but not dominating+

Figure 3. Functions of the various seasonal dummy processes: ~a! SDNAR1;
~b! SDNAR2; ~c! SDNAR3+
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For lag selection we consider four criteria: first of all, we compute the local
linear versions of the CAFPEs developed in the previous sections+ In addition,
we compute the linear FPE, AIC, and Schwarz criterion+ Furthermore, we in-
vestigate the performance of the suggested non- and semiparametric estimators
in terms of their mean integrated squared error and their prediction power rel-
ative to linear procedures+

For each replication, let x ' denote a subvector ofxM , whereasx represents
the correct lag vector+ Define the integrated squared error

ISE~ Zfs! 5
1

10,000(
i

$ Zfs~Xi
'! 2 fs~Xi !%

2, (24)

where the sum is over 10,000 observations+ The mean integrated squared error
MISE~ Zfs! is defined as the average ofISE~ Zfs! over theR replications+ The vec-
tor x ' can consist of the correct set of lags or can be selected from the respec-
tive criteria+

We also define the one-step prediction error by averaging

$YnS11 2 Zf0~XnS11
' !%2 (25)

over theR replications+

6.2. Results on Lag Selection

All results of the Monte Carlo simulations are shown in Figures 4–6+ Each bar
graph corresponds to one of the processes described previously and displays
the empirical frequencies of the four criteria to correctly fit~black bar!, overfit
~bar with vertical lines!, and underfit+ Underfitting is further split into two cases:
no wrong lags included~bar with horizontal lines! and wrong lags included
~white bar!+ The last case can be considered the worst outcome of all four as it
is neither parsimonious nor includes the correct model+

Figure 4 displays the results for the linear periodic PAR2 process and the
seasonal dummy linear SDAR process+ As expected the linear Schwarz crite-
rion ~SC! performs best in terms of correct selections+ The nonparametric CAFPE
performs better than AIC and linear FPE for the PAR2 process whereas all three
are comparable for the SDAR process+ Recall from the comment after Theo-
rem 4 that the local linear CAFPE is inconsistent for linear processes, and it is
well known that both the linear FPE and AIC are inconsistent as well+ There-
fore, it seems preferable to use the much more general CAFPE than the linear
AIC or linear FPE+

If one is interested in minimizing underfitting, one should use the linear AIC
or FPE+ These criteria exhibit the largest empirical frequencies to include the
correct lags+

Figures 5 and 6 show the results for the seasonal nonlinear processes+ The
main conclusion to be drawn here is that for all processes considered the non-
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parametric CAFPE scores highest in terms of correct selections and in most
cases it is the only useful procedure because the linear criteria can fail com-
pletely+ This failure is drastic for the seasonal nonlinear SNAR4 process with
four seasons, the seasonal dummy nonlinear SDNAR1 and SDNAR2 processes,
and the seasonal shift nonlinear SHNAR process+ In contrast, the CAFPE’s per-
formance loss for linear processes is much less severe+

The results for the seasonal nonlinear processes SNAR2 and SNAR4 in Fig-
ure 5 show that the number of seasons is not important as long as there are
enough observations for each season, 100 in both cases+ Certainly the observed
selection rates would drop if the total number of observations decreased+ To
maintain similar success rates, one has to reduce the seasonal flexibility, which
was the main motivation for the SDNAR and SHNAR models+ For the latter

Figure 4. Empirical frequencies of the lag selections for the PAR2 and SDAR pro-
cesses: n: correct fitting; : overfitting; : underfitting without wrong lags; ▫: under-
fitting with wrong lags+
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Figure 5. Empirical frequencies of the lag selections for the SNAR2, SNAR4, and
SDNAR1 processes: n: correct fitting; : overfitting; : underfitting without wrong
lags; ▫: underfitting with wrong lags+
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Figure 6. Empirical frequencies of the lag selections for the SDNAR2, SDNAR3, and
SHNAR processes: n: correct fitting; : overfitting; : underfitting without wrong lags;
▫: underfitting with wrong lags+
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models even 100 observations are sufficient to guarantee reasonable lag selec-
tion results as can be seen from the lower plot of Figure 5 and Figure 6+ The
plot for the SDNAR3 process also shows that the success rate can reach almost
80%+

If one only requires the selection procedures to include the correct lags, i+e+,
minimize underfitting, then the CAFPE criterion also performs best+ This holds
for underfitting without wrong lags and also with wrong lags+

In sum, the local linear CAFPE criterion shows good performance for all
seasonal processes+ It may therefore provide a useful compromise between re-
liable lag selection in the presence of nonlinearities and a tolerable decrease in
the correct lag selection probability for linear DGPs that is comparable to that
between the linear Schwarz criterion and the linear AIC+

6.3. Results on Estimation and Prediction

Besides identifying the relevant lags, it is also important to be able to accu-
rately estimate the conditional mean functions and to predict+ Therefore, we
compare the mean integrated squared errors~MISE! and prediction errors of
the proposed estimators and of simple linear ones+ The computing of these er-
rors is described in Section 6+1+

The upper part of Table 1 displays the results for the linear periodic auto-
regressive PAR2 process+ As expected, fitting a nonparametric SNAR model to
a linear process increases the MISE, both for correct lags and selected lags+
The same phenomenon is true for the prediction errors+ Similar conclusions
can be drawn from the lower part of Table 1 for the seasonal dummy linear

Table 1. Mean integrated squared error and prediction error: Periodic auto-
regressive processes

Selected lags Correct lags

CAFPE FPE AIC SC Nonp+ Linear

PAR2 process
Under-0Correct0Overfitting 3905506 0047053 0047053 209701
MISE~ Zf0! 0+2022 0+0580 0+0580 0+0398 0+0811 0+0346
MISE~ Zf1! 0+1476 0+0531 0+0531 0+0349 0+0927 0+0329
One-step prediction error 1+1743 1+0384 1+0384 0+9976 1+0392 0+9974

SDAR process
Under-0Correct0Overfitting 5104207 8050042 8050042 29059012
MISE~ Zf ! 0+3877 0+1617 0+1617 0+1843 0+2284 0+0992
MSE~ Zb1! 0+1246 0+1125 0+1125 0+1027 0+1135 0+0782
MSE~ Zb2! 0+3109 0+1901 0+1901 0+2321 0+1791 0+1410
MSE~ Zb3! 0+1588 0+1067 0+1067 0+1141 0+1177 0+0867
MISE~ Zf 1 (s51

3 ZbsD{,s! 0+3118 0+1144 0+1144 0+1290 0+1859 0+0769
One-step prediction error 0+9736 1+0080 1+0080 0+9982 1+0075 0+9855
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autoregressive SDAR process+We note for the SDAR process that although the
seasonal parametersbs are estimated poorly with the semiparametric proce-
dure, the semiparametric lag selection is roughly as good as the linear proce-
dures, as seen in Figure 4+

Are there substantial gains of the non- and semiparametric procedures in the
case of nonlinear seasonal processes? Table 2 contains the results for the sea-
sonal nonlinear autoregressive processes+ The largest improvement in predic-
tion error of the nonparametric procedure over Schwarz based lag selection and
linear estimation is about 26% and occurs for the SNAR2 process~1+28380
1+73762 1 5 226%!+ For the MISE of function estimation the largest reduc-
tion is 30% as in the case off0 of the SNAR2 process+

Table 3 contains the results for the seasonal dummy and seasonal shift non-
linear processes SDNAR1, SDNAR3, and SHNAR+ There is a substantial reduc-
tion in MISE and prediction error for the SDNAR1 process if the semiparametric
method is employed+ For the SDNAR3 the gain in prediction error becomes less
pronounced if lags have to be selected first and vanishes otherwise+ For the
SHNAR process the semiparametric reduction in MISE and prediction error for
f are larger than for the SDNAR1 process that is generated by the samef func-
tion+ One possible explanation is that the shift process is only one simple trans-
formation from a standard process whereas the dummy process can never be
transformed into a standard process+

We conclude that the non- and semiparametric identification procedures sug-
gested in Sections 3 and 4 are overall superior to linear procedures if the gen-
erated process is nonlinear, whereas the loss in MISE and prediction power
remains tolerable in case of linear processes+ Regardless of prediction, lag se-
lection is still quite robust+ This is traditionally attributed to the discrete nature

Table 2. Mean integrated squared error and prediction error: Seasonal nonlin-
ear autoregressive processes

Selected lags Correct lags

CAFPE FPE AIC SC Nonp+ Linear

SNAR2 process
Under-0Correct0Overfitting 3006901 31027042 31027042 6602905
MISE~ Zf0! 0+3928 0+4904 0+4904 0+5638 0+2570 0+4503
MISE~ Zf1! 0+4096 0+4263 0+4263 0+5306 0+3163 0+3982
One-step prediction error 1+2838 1+4404 1+4404 1+7376 1+1263 1+4070

SNAR4 process
Under-0Correct0Overfitting 5005000 7805017 7805017 990001
MISE~ Zf0! 0+2626 0+3638 0+3638 0+3565 0+1563 0+3524
MISE~ Zf1! 0+2456 0+3402 0+3402 0+3056 0+1467 0+3334
MISE~ Zf2! 0+2523 0+3265 0+3265 0+3442 0+1363 0+3122
MISE~ Zf3! 0+2330 0+3222 0+3222 0+3274 0+1312 0+3440
One-step prediction error 1+1014 1+0861 1+0861 1+2925 0+9380 1+1525
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of the latter+ In any case, the proposed procedures turn out to be applicable in
practice+ The next section will illustrate this+

7. EMPIRICAL APPLICATION

We apply the semiparametric methods introduced in Section 4 to two seasonal
macroeconomic time series: quarterly real West German GNP from 1960:1 to
1990:4 compiled by Wolters~1992, p+ 424, note 4! and quarterly UK public
investment in 1985 prices from 1962:1 to 1988:4 taken from Osborn~1990!+
These series were chosen because there exists a detailed analysis using linear
periodic models and seasonal unit root testing by Franses~1996! and because
they are available via the World Wide Web+4 All data are analyzed in logs+

In the introduction it was noted that the nonparametric analysis requires re-
moving ~non!seasonal unit roots from the data first+ To save space we refer to
the detailed analysis in Franses~1996, pp+ 66–72!+ He uses the HEGY proce-
dure and extensions+Allowing for a time trend and seasonal dummies and choos-
ing the lag order by means ofF-tests, he finds for the German real GNP roots
at 1 and2i, i and for the UK data roots at all seasonal frequencies and the zero
frequency+ However, for the German real GNP the evidence for the seasonal

Table 3. Mean integrated squared error and prediction error: Seasonal dummy
and seasonal shift nonlinear autoregressive processes

Selected lags Correct lags

CAFPE FPE AIC SC Nonp+ Linear

SDNAR1 process
Under-0Correct0Overfitting 23066011 990001 990001 1000000
MISE~ Zf ! 0+3907 0+5005 0+5005 0+4739 0+2816 0+4868
MSE~ Zb1! 0+1180 0+1280 0+1280 0+1045 0+1169 0+0918
MSE~ Zb2! 0+1672 0+1503 0+1503 0+1600 0+1470 0+1359
MSE~ Zb3! 0+1462 0+1190 0+1190 0+1199 0+1250 0+0967
MISE~ Zf 1 (s51

3 ZbsD{,s! 0+3574 0+4707 0+4707 0+4735 0+2558 0+4685
One-step prediction error 1+1697 1+4848 1+4848 1+3950 1+1031 1+4183

SDNAR3 process
Under-0Correct0Overfitting 0078022 3046051 3046051 5077018
MISE~ Zf ! 0+0720 0+0672 0+0672 0+0632 0+0653 0+0550
MSE~ Zb1! 0+0147 0+0186 0+0186 0+0118 0+0135 0+0142
MSE~ Zb2! 0+0158 0+0462 0+0462 0+0397 0+0154 0+0244
MSE~ Zb3! 0+0191 0+0264 0+0264 0+0228 0+0180 0+0150
MISE~ Zf 1 (s51

3 ZbsD{,s! 0+0678 0+0551 0+0551 0+0535 0+0619 0+0507
One-step prediction error 0+1457 0+1515 0+1515 0+1489 0+1549 0+1485

SHNAR process
Under-0Correct0Overfitting 2506708 7107022 7107022 900505
MISE~ Zf ! 0+3490 0+4327 0+4327 0+4273 0+2669 0+4508
One-step prediction error 1+4031 1+7306 1+7306 1+7074 1+2145 1+5276
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roots at2i, i vanishes if one allows for shifting means in the middle of the
sample+We therefore investigate the two series after taking first and fourth dif-
ferences, respectively+ Moreover, for the lag selection procedure we divide each
resulting series by its standard deviation+

For lag selection the SDNAR model~3! and the SHNAR model~5! are ap-
plied, whereas the SNAR model~1! is not fitted because of the small number
of years+ In addition, the three linear criteria FPE, AIC, and SC are used+ In
all cases the procedures search over all possible lag combinations up to lag
M 5 8+ Table 4 summarizes the selection results for both data sets+ It contains
the selected lags, the values of the selection criteria, and the estimated optimal
bandwidths+ The lags are ordered with respect to their contribution to reducing
the selection criterion+ The first column indicates the model+ The modelf 5 0
contains only seasonal dummies but no lagged regressors+ The variance of the
resulting noise is equivalent to that ofZUs 5 Ys 2 Zds, the adjusted data after
removing the mean shifts+ Because the original data have been divided by the
standard deviation, the variance of the adjusted data is at most one+

We compare the forecasting performance of all procedures using recursive
prediction errors computed as follows+ At each timet, observations up to time
t 2 1 are used to select the lags and predictZYt for approximately the last 20%
of observations of each time series+ This amounts to the last six and five years
of the German and UK data, respectively+ Table 5 shows for each model and
both data sets the average of the squared deviations of the predicted values
from their corresponding true ones+

Table 4. Semiparametric lag selection

Model Criterion Selected lags Est+ criterion Zhopt

First differences of German real GNP data
f 5 0 Var~ ZYt ! 0 0+23 —
Dummy CAFPE 4,1,7 0+075 0+53
Shift CAFPE 4,2,8 0+084 0+41
Linear FPE 4,2,8 0+091 —
Linear AIC 4,2,8 22+393 —
Linear SC 4,2 22+233 —

Fourth differences of UK public investment
f 5 0 Var~ ZYt ! 0 0+991 —
Dummy CAFPE 1,6,5 0+407 1+24
Shift CAFPE 1,6,5 0+392 1+07
Linear FPE 1,2,4,6,8 0+438 —
Linear AIC 1,2,4,6,8 20+826 —
Linear SC 1,2,4 20+610 —

Note: The selected lags are listed with respect to their contribution to reducing the CAFPE+ The maximal lag
considered is 8, and all possible lag combinations are considered+ The linear models are SDAR models+
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Table 4 shows that regressing the first differences of the German real GNP
data only on seasonal dummies reduces the variance to 0+23+ Using the SDNAR
model lags 4,1,7 are selected+ The corresponding CAFPE of 0+075 implies a
further substantial reduction in the error variance+ Taking the SHNAR model
instead leads to lags 4,2,8 and a CAFPE value of 0+084+ The FPE estimate of
the linear model selects the same lags and its value is 0+091+

We inspected the estimated residuals of both nonlinear models using God-
frey misspecification tests~e+g+, Godfrey, 1979!, which test an AR~ p! model
against an AR~ p 1 r ! model or an ARMA~ p, r ! model+ Here we user 5 1 and
r 5 4+ In addition, the Jarque–Bera~JB! test statistic is computed+ Because the
Godfrey tests are designed for linear models, the results have to be interpreted
with care+ To save space we left out all test statistics+ However, they are all far
below the linear critical values, and so the results may be quite robust+ In par-
ticular, there is no seasonality left in the residuals, and so using the first differ-
encing filter is justified+

Following the discussion at the end of Section 4 on how to select between
the SDNAR and SHNAR model, we prefer the SDNAR model for the first dif-
ferences of the German real GNP as the corresponding CAFPE is about 11%
smaller than that of the SHNAR model+

To represent the SDNAR model graphically, we keep the least important lag,
lag 7, fixed and vary lags 1 and 4 on a grid+ Figure 7 displays three surfaces of
the estimated function on the domain of the observations+ To look only on the
domain of the observations reduces irrelevant boundary effects+ This domain is
plotted in the plane of the regressors+ For visualization, all values have been
multiplied by the standard deviation of the first differences, which is 0+052+
Lag 7 is fixed at20+05, 0, 0+05+ The estimates of the seasonal dummy param-
eters are 0+023, 0+018, 20+050+ The dummy model shows pronounced nonlin-
earities+ For example, comparing the upper plot with the other two shows that
if the quarterly growth was down all quarters, then today’s growth is overpro-
portionally low also+ The influence of the growth performance in the last quar-
ter on today’s growth is ambiguous+ It depends very much on the direction and
magnitude of last quarter’s growth and also on the situation one year ago+ If
one fits a linear model such effects may easily average out and turn out insig-
nificant+ Indeed, the linear criteria do not select lag 1+

Table 5. Recursive prediction errors

Dummy Shift

Data CAFPE FPE AIC SC CAFPE FPE AIC SC

German 0+0413 0+0534 0+0504 0+0528 0+0524 0+0578 0+0582 0+0598
UK 0+9623 0+8808 0+8562 0+9458 0+8291 0+7972 0+7933 0+9183
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The recursive prediction errors in Table 5 support the superiority of the
SDNAR model+ The closest competitor is the linear dummy model using AIC
lag selection, which is still 22% larger~0+50400+413 5 122%!+ Comparing to
the linear models and the nonlinear shift model, this example illustrates the
empirical benefits of the more sophisticated nonlinear dummy model+

For the fourth differences of the UK public investment data the selection
results are presented in Table 4+ After having applied the fourth-order differ-
encing filter, there is no relevant seasonality left in the data because removing
seasonal shifts from the series does not change its variance+ One may therefore
expect the SDNAR and SHNAR models to perform similarly+ Indeed, the cho-

Figure 7. German real GNP: dummy model with lags 1 and 4 given lag 7 fixed at
20+05, 0, 0+05+
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sen lag vector 1,6,5 is the same for both models+ In contrast, all linear criteria
contain the different vector 1,2,4+

As in the previous case, the residual diagnostics of the nonlinear models in-
dicate no sign of misspecification and are therefore not reported here+ The sur-
faces of the estimated regression function of the SHNAR model are shown in
Figure 8, where the value of lag 5 is fixed at20+10, 0, 0+10+ All surfaces look
quite smooth+ The deviation from linear hyperplanes is less pronounced than

Figure 8. UK public investment: shift model with lags 1 and 6 given lag 5 fixed at
20+10, 0, 0+1+
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for the German real GNP data although still evident+ Therefore, a linear model
could be superior for forecasting+ This is confirmed by the prediction errors
reported in Table 5, where the recursive errors of the nonlinear shift model are
4+5% larger than those of the linear shift model using AIC lag selection~0+82910
0+79335 104+5%!+ The linearity hypothesis can be tested, e+g+, with the non-
parametric linearity tests of Hjellvik and Tjøstheim~1995, 1996! and Hjellvik,
Yao, and Tjøstheim~1998!, which can be applied to both the adjusted data
$Xt , EYt % of the SDNAR model and the deseasonalized data$ ZUt % of the SHNAR
model+ The prediction results also show that for the UK data set the shift model
is the appropriate model+

8. CONCLUSION

In this paper, we have proposed nonparametric estimation and lag selection meth-
ods for seasonal nonlinear autoregressive models and derived semiparametric
estimators for two restricted versions, one allowing the seasonal function to
shift across seasons only by a constant parameter, the other generalizing linear
unobserved components models+ All methods allow for either local constant or
local linear estimation+ For the semiparametric models, after preliminary esti-
mation of the seasonal parameters, the function estimation and lag selection are
the same as nonparametric estimation and lag selection for standard models+ A
Monte Carlo study demonstrates good performance of all three methods+ The
methods are applied to the German real GNP data and UK public investment+ It
was found that the semiparametric lag selection and estimation procedures work
even with moderate sample sizes+ They help to identify more complicated dy-
namics in economic time series and can improve forecasting+

NOTES

1+ Most prominent examples for model-based seasonal adjustment procedures are the unob-
served components approach that includes the structural time series approach and the ARIMA model-
based approach+ The Census X-11 and the Hodrick–Prescott filter are representatives of procedures
with model-based interpretation+

2+ The formulation of models~3! and~5! might lead one to think that it is also possible to have
a model such as

Yt 5 f ~Yt2i1 2 d$t2i1% , + + + ,Yt2im 2 d$t2im% ! 1 et +

This is in fact not useful if one still wants to have some kind of strict stationarity+ If the process
$Yt %t$0 itself is stationary, then unless all the parametersd$t2i1% , + + + ,d$t2im% are all equal, in which
case they can be all set to 0 and one gets back to a standard process, the Yt defined by this
expression will not be stationary, even not for each season+ On the other hand, if one wants to
have stationarity of$Yt 2 d$t %%t$0, then this equation makesYt stationary, and therefore all param-
eterd$t2i1% , + + + ,d$t2im% equal+ We have therefore restricted our semiparametric study to models~3!
and ~5!+

3+ All procedures were programmed in GAUSS using DLLs written in C11 and run on Sun
workstations+

4+ http:00www+few+eur+nl0few0people0franses0research0book1+htm+
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APPENDIX

For the results in this paper, we need the following assumptions+

(A1) For some integerM $ im and for each season, the vector processXt,M is strictly
stationary andb-mixing with b~n! # c0n2~21d!0d for somed . 0, c0 . 0+ Here

b~n! 5 E sup$6P~A6FM
k! 2 P~A!6 :A [ Fn1k

` %,

whereFt
t ' is the s-algebra generated byXM, t ,XM, t11, + + + ,XM, t ' + For each seasons 5

0,1, + + + ,S 2 1, $Xs1tS,M %t5iM,S
` has a stationary distribution with densityms,M~xM !,

xM [ IRM, which is continuous+ Henceforth, we usems~{! to denote bothms,M~{! and all
of its marginal densities+ If the Nadaraya–Watson estimator is used, ms,M~{! has to be
continuously differentiable+

(A2) The functionsfs~{!, s 5 0,1, + + + ,S 2 1 are twice continuously differentiable,
whereas eachss~{! is continuous and positive on the support ofms~{!, s5 0,1, + + + ,S2 1+

(A3) The errors$jt %t$im have a finite fourth momentm4+

(A4) The support ofw~{! is compact with nonempty interior+ The functionw~{! is
continuous and nonnegative andms~x! $ c for some constantc . 0 if xM [ supp~w!+

(A5) There exists a constantc . 0 such that for any proper subset$i1
' , + + + , im'

' % of
$i1, + + + , im% , and anyS functions$ fs

'%s50
S21 of m' variables,

EF(
s50

S21

$ fs~Yt2i1, + + + ,Yt2im! 2 fs
'~Yt2i1

' , + + + ,Yt2im'
' !%2w~Yt21, + + + ,Yt2M !G $ c+

See Theorem 2 for lower level conditions to guarantee~A1!+ Note that just as in As-
sumption~A1! of Tschernig and Yang~2000, p+ 459!, the strict stationarity condition in
the preceding~A1! is not necessary, but we include it here for simplicity of the proof+
Assumption~A5! guarantees that all the lags$i1, + + + , im% are needed in allS functions to
fit the model correctly+ In other words, the functionsfs~ yt2i1, + + + , yt2im!, s 5 0,1, + + + ,
S 2 1 do not reduce to functions with fewer variables on the support of the weight
function w~{!; hence none of the variablesYt2i1, + + + ,Yt2im can be left out to predictYt

conditional on past observations+ The next assumption is needed for the existence of
ha,opt+
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(A6) For a 5 1,2, the Ca defined in~13! are positive and finite+

For the seasonal shift~SHNAR! model, several of these assumptions have to be
modified+

(A1') For some integerM $ im, the vector processVt,M 5 ~Ut21, + + + ,Ut2M ! is strictly
stationary with continuous density functionmM~{! andb-mixing with b~n! # c0n2~21d!0d

for somed . 0, c0 . 0+ If the Nadaraya–Watson estimator is used, mM~{! has to be
continuously differentiable+ The density ofVt 5 ~Ut2i1, + + + ,Ut2im! is denoted asm~{!+

(A2') The functionf ~{! is twice continuously differentiable, whereass~{! is contin-
uous and positive on the support ofm~{!+

(A4') The support ofw~{! is compact with nonempty interior+ The functionw~{! is
continuous, nonnegative, and bounded below from 0 on the support ofw~{!+

(A5') There exists a constantc . 0 such that for any proper subset$i1
' , + + + , im'

' % of
$i1, + + + , im% , and any functionf ' of m' variables,

E @$ f ~Ut2i1, + + + ,Ut2im! 2 f '~Ut2i1
' , + + + ,Ut2im'

' !%2w~Ut21, + + + ,Ut2M !# $ c+

(A6') For a 5 1,2,

0 , Era
2~u!m~uM !w~uM !duM , 1`, (A.1)

where

r1~u! 5 Tr $¹2f ~u!% 1
2¹Tm~u!¹f ~u!

m~u!
, r2~u! 5 Tr $¹2f ~u!%+ (A.2)

Proof of Theorem 2. Note first that condition~E1! guarantees the recurrence of the
process$Vt%t$k+ Observe next that by repeated application of condition~E2! equation
~9! implies the existence of a constantR' . 0 and a matrix of coefficients~bsj!1#s#S,1#j#kS

with all bsj $ 0 and max1#s#S (j51
kS bsj 5 b , 1 such that

E~6YtS2s116 8YtS2S 5 y1, + + + ,YtS2S2kS11 5 ykS! # (
j51

kS

bsj 6yj 6,

1 # s# S, t . k (A.3)

when min1#j#kS6yj 6$ R' + Now define a functiong~v! 5 (i51
kS gi 6vi 6 for v5 ~v1, + + + , vkS!

with positive coefficientsgi , 1 # i # kS, to be determined subject to the condition that
for some constants« . 0 and 0, c , 1

E$g~Vt ! 8Vt21 5 v% # cg~v! 2 «, t 5 k 1 1, k 1 2, + + + (A.4)
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when min1#j#kS6vj 6 $ R' + By definition of g~{! and equation~A+3!

E$g~Vt ! 8Vt21 5 v% 5 EH(
i51

kS

gi 6YtS2i116 8Vt21 5 vJ
5 (

i51

S

gi E$6YtS2i116 8Vt21 5 v% 1 (
i5S11

kS

gi 6vi2S6

# (
i51

S

gi (
j51

kS

bij 6vj 61 (
j51

kS2S

gj1S6vj 6

5 (
j5kS2S11

kS

6vj 6(
i51

S

gi bij 1 (
j51

kS2S

6vj 6Sgj1S1 (
i51

S

gi bijD+
To obtain~A+4!, one needs to have a constant 0, c' , 1 such that

(
j5kS2S11

kS

6vj 6(
i51

S

gi bij 1 (
j51

kS2S

6vj 6Sgj1S1 (
i51

S

gi bijD , c' (
j51

kS

gj 6vj 6

when min1#j#kS6vj 6 $ R' , or equivalently

gj1S1 (
i51

S

gi bij , gj , 1 # j # kS2 S,

(
i51

S

gi bij , gj , kS2 S1 1 # j # kS,

which are simply

1
gS11

I

g2S
2 , 1

g1

I

gS
2 2 ~bij !1#i#S,1#j#S1

g1

I

gS
2 ,

1
g2S11

I

g3S
2 , 1

gS11

I

g2S
2 2 ~bij !1#i#S,S11#j#2S1

g1

I

gS
2 ,

I

1
gkS2S11

I

gkS
2 , 1

gkS22S11

I

gkS2S
2 2 ~bij !1#i#S, kS22S11#j#kS2S1

g1

I

gS
2 ,

~bij !1#i#S, kS2S11#j#kS1
g1

I

gS
2 , 1

gkS2S11

I

gkS
2 ,
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where all the inequalities are taken to be elementwise+ Apparently, one can solve this
system of inequalities if and only if one can find positivegi , 1 # i # S, such that

~bij !1#i#S, kS2S11#j#kS1
g1

I

gS
2 , 1

g1

I

gS
2 2 ~bij !1#i#S,1#j#S1

g1

I

gS
2

2 {{{~bij !1#i#S, kS22S11#j#kS2S1
g1

I

gS
2

or

S(
l50

k21

bi, j1lSD
1#i#S,1#j#S1

g1

I

gS
2 , 1

g1

I

gS
2 +

Now max1#s#S (j51
kS bsj 5 b , 1 implies thatg1 5 {{{ 5 gS 5 1 will solve the preceding

inequality+ Hence one can construct a functiong~{! that satisfies~A+4!, which entails
that the process$Vt%t$k is geometrically ergodic by Theorem 3 of Doukhan~1994, p+ 91!,
from which the rest of the lemma follows also+ n

Proof of Theorem 3 and Theorem 4.For eachs 5 0,1, + + + ,S 2 1, the following
decomposition holds:

E @$Y̆s1tS2 Zfs~ X̆s1tS!%2w~ X̆s1tS,M !# 5 Is 1 II s 1 III s,

in which

Is 5 E @$Y̆s1tS2 fs~ X̆s1tS!%2w~ X̆s1tS,M !# 5 E @ss
2~ X̆s1tS!w~X̆s1tS,M !j̆s1tS

2 # ,

II s 5 E @$ Zfs~ X̆s1tS! 2 fs~ X̆s1tS!%2w~ X̆s1tS,M !# ,

III s 5 2E @$Y̆s1tS2 fs~ X̆s1tS!%$ fs~ X̆s1tS! 2 Zfs~ X̆s1tS!%w~ X̆s1tS,M !# ,

5 2E @$ fs~ X̆s1tS! 2 Zfs~ X̆s1tS!%w~ X̆s1tS,M !ss~ X̆s1tS!j̆s1tS# 5 0+

Now the innovationsj̆s1tS are i+i+d+ white noise, so

1

S (
s50

S21

Is 5
1

S (
s50

S21

E @ss
2~ X̆s1tS!w~ X̆s1tS,M !# 5

1

S (
s50

S21 Ess
2~x!w~xM !ms~xM !dxM 5 A,

whereA was defined in~11!+
The second termII s is

II s 5EE$ Zfs~x! 2 fs~x!%2w~xM !ms~xM !dxM ,

1442 LIJIAN YANG AND ROLF TSCHERNIG



in which

E$ Zfs~x! 2 fs~x!%2 5 $ra,s~x!sK
2h202%2 1 7K722m

ss
2~x!

ms~x!nM,Shm 1 oSh4 1
1

nhmD
according to Theorem 1 and especially equation~8!+ Thus

II s 5
sK

4h4

4
Era,s

2 ~x!w~xM !ms~xM !dxM 1
7K722m

nM,Shm E ss
2~x!

ms~x!
w~xM !ms~xM !dxM

1 oSh4 1
1

nhmD
5 c~h!Era,s

2 ~x!w~xM !ms~xM !dxM 1 b~h!E ss
2~x!

ms~x!
w~xM !ms~xM !dxM

1 oSh4 1
1

nhmD+
In summary

1

S (
s50

S21

E @$Y̆s1tS2 Zfs~ X̆s1tS!%2w~ X̆s1tS,M !#

5 A 1 c~h!
1

S (
s50

S21 Era,s
2 ~x!w~xM !ms~xM !dxM

1 b~h!
1

S (
s50

S21 E ss
2~x!

ms~x!
w~xM !ms~xM !dxM 1 oSh4 1

1

nhmD,
which yields Theorem 3+

For establishing Theorem 4, one applies similar techniques to the cases whenXt does
not include all correct lags and when it includes them correct plusl additional ones+ See
Tschernig and Yang~2000, Sec+ 3!, for details+ n

To prove Theorem 5 one first decomposes the estimator into two parts:

Nbs 5

(
t5iM,S

nS

w~Xs1tS,M ! Zbs~Xs1tS, h!

(
t5iM,S

nS

w~Xs1tS,M !

5
P1 1 P2

1

nS
(

t5iM,S

nS

w~Xs1tS,M !

, (A.5)

in which

P1 5
1

nS
(

t5iM,S

nS

w~Xs1tS,M !es
T$~ZD

T WZD !21ZD
T W%~Xs1tS!e,

P2 5
1

nS
(

t5iM,S

nS

w~Xs1tS,M !es
T$~ZD

T WZD !21ZD
T W%~Xs1tS!f,
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and here one denotes bye 5 ~ss~Xs1tS!js1tS!T the innovation vector andf 5
~ f ~Xs1tS! 1 bs!

T the prediction vector+ Using the mixing conditions, similar to Härdle
et al+ ~1998!, one has

1

nS
(

t5iM,S

nS

w~Xs1tS,M ! 5Ems~xM !w~xM !dxM $11 op~1!%,

and so Theorem 5 is proved by analyzingP1 andP2 using the following lemmas+

The following auxiliary lemma is a standard result+

LEMMA A +1+ Under conditions (A1)–(A4), as hr 0, nhm r `, for any compact
setK

sup
x[K
6~ZD

T WZD !21~x! 2 SD
21~x!6

a+s
&& 0,

where

SD
21~x! 5 3

m0
21~x! 2m0

21~x! J 2m0
21~x! 013m

2m0
21~x! m1

21~x! 1 m0
21~x! J m0

21~x! 013m

I I L I I

2m0
21~x! m0

21~x! J mS21
21 ~x! 1 m0

21~x! 013m

0m31 0m31 J 0m31 S21m21~x!sK
22 Im

4
5 3

m0
21~x! 2m0

21~x!113~S21! 013m

2m0
21~x!1~S21!31 diag$~ms~x!21%s51

S21 1 m0
21~x!1~S21!3~S21! 0~S21!3m

0m31 0m3~S21! S21m21~x! ImsK
22
4 +

Proof. Observe that each element of the matrix~ZD
T WZD !~x! can be written as

(
s50

S21

(
t5iM,S

nS

Zjt Zit Kh~Xs1tS2 x!, i, j 5 1, + + + ,m1 S+

Because for each season a stationary densityms~x! exists, one obtains for theS sums
using the mixing property

~ZD
T WZD !~x! 5 3

Sm~x! m1~x! J mS21~x! 013m

m1~x! m1~x! J 0 013m

I I L I I

mS21~x! 0 J mS21~x! 013m

0m31 0m31 J 0m31 Sm~x!sK
2 Im

4~Im1S1 op~1!!

uniformly over the compact setK+ It is straightforward to verify the inversion+ n

Note in particular, because the random vectorXt 1$w~Xt,M !.0% has a density with com-
pact support by Assumption~A4!, Lemma A+1 applies to its supportK+ To analyseP1,
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one considers the effect of weighted averaging on$~ZD
T WZD !21ZD

T W%~Xs1tS!+ Denote
xM by ~x, xM

' !, wherexM corresponds to the largest lag vector, and define

ms,w~x! 5Ew~x, xM
' !ms~x, xM

' !dxM
' (A.6)

as the weighted density atx+ The next lemma is important+

LEMMA A +2+ As hr 0, nhm r `,

1

nM,S
(

t5iM,S

nS

w~Xs1tS,M !$~ZD
T WZD !21ZD

T W%~Xs1tS!

5E$SD
21ZD

T W%~x!ms,w~x!dx$11 op~1!%+

Proof. Using the mixing property, one has

1

nM,S
(

t5iM,S

nS

w~Xs1tS,M !$~ZD
T WZD !21ZD

T W%~Xs1tS!

5Ew~xM !$~ZD
T WZD !21ZD

T W%~x!ms~xM !dxM $11 op~1!%

5E$~ZD
T WZD !21ZD

T W%~x! 3 ~wms!~x, xM
' !dxdxM

' $11 op~1!%+

Integrating first inxM
' as in~A+6! and then applying Lemma A+1 gives the formula in the

lemma+ n

LEMMA A +3+ As hr 0, nhm r `, MnSP1
D

&& N~0,ss
2! where

ss
2 5EH 1

ms~x!
1

1

m0~x!Jms,w
2 ~x!ss

2~x!dx+

Proof. By definition

P1 5
1

nS
(

t5iM,S

nS

w~Xs1tS,M !es
T$~ZD

T WZD !21ZD
T W%~Xs1tS!e+

Applying Lemma A+2, one has

P1 5Ees
T$SD

21ZD
T W%~x!ms,w~x!dxe$11 op~1!%

5
1

nS
Ems,w~x! H 1

ms~x!
1

1

m0~x!J (
t5iM,S

nS

Kh~Xs1tS 2 x!ss~Xs1tS!js1tSdx$11 op~1!%

2
1

nS
E ms,w~x!

m0~x! (
0#s'#S21

(
t5iM,S

nS

Kh~Xs'1tS 2 x!ss~Xs'1tS!js'1tSdx$11 op~1!%

1 (
1#s'#S21, s'Þs

1

nS
E ms,w~x!

m0~x! (
t5iM,S

nS

Kh~Xs'1tS 2 x!ss~Xs'1tS!js'1tSdx$11 op~1!%,
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which, by cancellation and changes of variables, becomes

1

nS
(

t5iM,S

nS ms,w~Xs1tS!

ms~Xs1tS!
ss~Xs1tS!js1tS$11 op~1!%

2
1

nS
(

t5iM,S

nS ms,w~XtS!

m0~XtS!
ss~XtS!jtS$11 op~1!%+

By a martingale central limit theorem~Liptser and Shirjaev, 1980, Corollary 6!, MnSP1

is asymptotically normal with variance

E 1

ms
2~x!

ms~x!ms,w
2 ~x!ss

2~x!dx1E 1

m0
2~x!

m0~x!ms,w
2 ~x!ss

2~x!dx

5EH 1

ms~x!
1

1

m0~x!Jms,w
2 ~x!ss

2~x!dx5 ss
2,

which completes the proof+ n

LEMMA A +4+ As hr 0, nhm r `,

P2 2
1

nS
(

t5iM,S

nS

w~Xs1tS,M !bs 5 Op~h4!+

Proof. By definition

P2 2
1

nS
(

t5iM,S

nS

w~Xs1tS,M !bs

5
1

nS
(

t5iM,S

nS

w~Xs1tS,M !@es
T$~ZD

T WZD !21ZD
T W%~Xs1tS!f 2 bs# +

Using the fact thates
T$~ZD

T WZD !21ZD
T W%ZD es' 5 1 or 0 depending on whethers 5 s' ,

the preceding expression equals

1

nS
(

t5iM,S

nS

w~Xs1tS,M !es
T$~ZD

T WZD !21ZD
T W%~Xs1tS!$f 2 bsZD~Xs1tS!es 2 f ZD~Xs1tS!e0%

2
1

nS
(

t5iM,S

nS

w~Xs1tS,M !es
T$~ZD

T WZD !21ZD
T W%~Xs1tS!$¹Tf ZD~Xs1tS!~eS11, + + + ,eS1m!%,

which is

FEes
T$SD

21ZD
T W%~x!ms,w~x!$f 2 bsZD~x!es 2 f ZD~x!e0%dx

2 Ees
T$SD

21ZD
T W%~x!ms,w~x!$¹Tf ZD~x!~eS11, + + + ,eS1m!%dxG$11 op~1!%
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or approximately

F 1

nS
Ems,w~x! H 1

ms~x!
1

1

m0~x!J (
t5iM,S

nS

Kh~Xs1tS2 x!

3 $ f ~Xs1tS! 2 f ~x! 2 ¹Tf ~x!~Xs1tS2 x!%dx

2
1

nS
E ms,w~x!

m0~x! (
0#s'#S21

(
t5iM,S

nS

Kh~Xs'1tS2 x!

3 $ f ~Xs'1tS! 2 f ~x! 2 ¹Tf ~x!~Xs'1tS2 x!%dx

1 (
1#s'#S21, s'Þs

1

nS
E ms,w~x!

m0~x! (
t5iM,S

nS

Kh~Xs'1tS2 x!

3 $ f ~Xs'1tS! 2 f ~x! 2 ¹Tf ~x!~Xs'1tS2 x!%dxG ,
which, after cancellation, becomes

F 1

nS
E ms,w~x!

ms~x! (
t5iM,S

nS

Kh~Xs1tS2 x!$ f ~Xs1tS! 2 f ~x! 2 ¹Tf ~x!~Xs1tS2 x!%dx

2
1

nS
E ms,w~x!

m0~x! (
t5iM,S

nS

Kh~XtS2 x!$ f ~XtS! 2 f ~x! 2 ¹Tf ~x!~XtS2 x!%dxG
3 $11 op~1!%+

Now for the second term in the preceding expression, i+e+, the sum of the 0-season,

1

nS
E ms,w~x!

m0~x! (
t5iM,S

nS

Kh~XtS2 x!$ f ~XtS! 2 f ~x! 2 ¹Tf ~x!~XtS2 x!%dx

5E ms,w~x!

m0~x!
EKh~ y 2 x!$ f ~ y! 2 f ~x! 2 ¹Tf ~x!~ y 2 x!%dxm0~ y!dy$11 op~1!%

y2x5hu
5 E ms,w~x!

m0~x!
EK~u!$ f ~x 1 hu! 2 f ~x! 2 h¹Tf ~x!u%dxm0~x 1 hu!

3 du$11 op~1!%

5
h2sK

2

2
Ems,w~x!Tr $¹2f ~x!%dx1 Op~h4!+

Doing the same thing for thes-season, and taking the difference, one arrives at the con-
clusion of the lemma+ n

Proof of Theorem 5. Putting together equation~A+5! and Lemmas A+3 and A+4 proves
the theorem+ n
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Proof of Theorem 6. This follows by examining the proofs of Lemmas A+3 and A+4+
Lemma A+3 would still hold in this situation, whereas Lemma A+4 has to be modified+
Specifically, the termP2 is

Ems,w~x ' ! fs
'~x!dx2Ems,w~x ' ! f0

'~x!dx1 Op~h2!

or

Ems,w~x ' !$ fs
'~x! 2 f0

'~x!%dx1 Op~h2! 5E$ fs
'~x! 2 f0

'~x!%w~xM !ms~xM !dxM

1 Op~h2!

according to definition~A+6!+ See Tschernig and Yang~2000! for more details about
nonvanishing bias in underfitting+ n

Proof of Theorem 7. This theorem is an obvious consequence of the central limit
theorem for mixing processes~see Doukhan, 1994, Theorem 1, p+ 46!+ n
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