
Journal of Nonparametric Statistics
Vol. 23, No. 1, March 2011, 67–81

A jump-detecting procedure based on spline estimation
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In a random-design nonparametric regression model, procedures for detecting jumps in the regression
function via constant and linear spline estimation method are proposed based on the maximal differences
of the spline estimators among neighbouring knots, the limiting distributions of which are obtained when
the regression function is smooth. Simulation experiments provide strong evidence that corroborates with
the asymptotic theory, while the computing is extremely fast. The detecting procedure is illustrated by
analysing the thickness of pennies data set.
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1. Introduction

In application of regression methods, ignoring possible jump points may result in a serious error
in drawing inference about the process under study. Whenever there is no appropriate parametric
method available, one may start from nonparametric regression. Two popular nonparametric
techniques are kernel and spline smoothing. For properties of kernel estimators in the absence of
jump points, see Mack and Silverman (1982), Fan and Gijbels (1996), Xia (1998) and Claeskens
and Van Keilegom (2003), and for spline estimators, see Zhou, Shen, and Wolfe (1998), Huang
(2003) and Wang and Yang (2009).

One is often interested in detecting jump points and estimating regression function with jumps.
We assume that observations {(Xi, Yi)}ni=1 and unobserved errors {εi}ni=1 are i.i.d. copies of
(X, Y, ε) satisfying the regression model

Y = m(X) + σε, (1)

where the joint distribution of (X, ε) satisfies Assumptions (A3) and (A4) in Section 2. The
unknown mean function m(x), defined on interval [a, b], may have a finite number of jump
points.
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68 S. Ma and L. Yang

Jump regression analysis started in the early 1990s and has become an important research topic
in statistics. See, for instance, Qiu, Asano, and Li (1991), Müller (1992), Wu and Chu (1993),
Qiu (1994) and Qiu and Yandell (1998) for procedures that detect the jumps explicitly before
estimating the regression curve, Kang, Koo, and Park (2000) for comparing two estimators of the
regression curve after the jump points are detected, Qiu (2003) and Gijbels, Lambert, and Qiu
(2007) for jump-preserving curve estimators and Joo and Qiu (2009) for jump detection in not
only the regression curve but also its derivatives. For a comprehensive view on jump regression,
see Qiu (2005).

Jump detection has been tackled with many techniques, including local polynomial smooth-
ing (Qiu 2003; Gijbels et al. 2007), smoothing spline (Shiau 1987) and wavelet methods (Hall
and Patil 1995; Wang 1995; Park and Kim 2004, 2006). For two-dimensional cases, see Qiu
(2007). We propose a spline smoothing method to detect jumps by solving one optimisation prob-
lem over the range of x instead of each point, which is computationally more expedient than
the kernel-type method in Müller (1992). The spline method was also discussed in Koo (1997),
which proposed estimating discontinuous regression function without providing theoretical justi-
fications. In contrast, asymptotic distributions in Theorem 2.1 are established by making use of the
strong approximation results in Wang andYang (2009), normal comparison lemma in Leadbetter,
Lindgren, and Rootzén (1983) and a convenient formula from Kılıç (2008) for inverting a tridiag-
onal matrix. The automatic procedures proposed for detecting jumps are based on implementing
the asymptotics of Theorem 2.1.

The paper is organised as follows. Section 2 states main theoretical results based on (piecewise)
constant and linear splines. Section 3 provides steps to implement the procedure based on the
asymptotic result. Section 4 reports findings in both simulation and real data studies. All technical
proofs are contained in the Appendices.

2. Main results

We denote the space of the pth order smooth functions as C(p)[a, b] = {ϕ|ϕ(p) ∈ C[a, b]}, for
p = 1, 2. Without loss of generality, we take the range of X, [a, b] to be [0, 1]. To introduce the
spline functions, divide the finite interval [0, 1] into (N + 1) equal subintervals Jj = [tj , tj+1),
j = 0, . . . , N − 1, JN = [tN , 1]. A sequence of equally spaced points {tj }Nj=1, called interior
knots, are given as

t0 = 0 < t1 < · · · < tN < 1 = tN+1, tj = jh, j = 0, . . . , N + 1,

in which h = 1/(N + 1) is the distance between neighbouring knots. We denote by G(p−2) =
G(p−2)[0, 1] the space of functions that are polynomials of degree p − 1 on each Jj and have a
continuous (p − 2)th derivative. For example, G(−1) denotes the space of functions that are con-
stant on each Jj , and G(0) denotes the space of functions that are linear on each Jj and continuous
on [0, 1]. Define the spline estimator based on data {(Xi, Yi)}ni=1 drawn from model (1) as

m̂p(x) = argming∈G(p−2)[0,1]
n∑

i=1

{Yi − g(Xi)}2, p = 1, 2. (2)

The unknown function m(x) in Equation (1) may be smooth or have jump points {τi}ki=1, for
0 = τ0 < τ1 < · · · < τk < τk+1 = 1. Technical assumptions are listed as follows.

(A1) There exist a function m0(x) ∈ C(p)[0, 1] and a vector c = (c1, . . . , ck) of jump magnitudes
such that the regression function m(x) = cl + m0(x), x ∈ [τl, τl+1), for l = 1, . . . , k −
1, m(x) = m0(x), x ∈ [τ0, τ1), m(x) = ck + m0(x), x ∈ [τk, τk+1].
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(A2) The number of interior knots N = o(n1/(2p+1)+ϑ) for any ϑ > 0 while N−1 =
o(n−1/(2p+1)/ log n).

(A3) X is uniformly distributed on interval [0, 1], i.e. the density function of X is f (x) = I (0 ≤
x ≤ 1).

(A4) The joint distribution F(x, ε) of random variables (X, ε) satisfies the following:
(a) The error is a white noise: E(ε|X = x) = 0, E(ε2|X = x) = 1.
(b) There exist a positive value η > 1 and a finite positive Mη such that E|ε|2+η < Mη and

supx∈[0,1] E(|ε|2+η|X = x) < Mη.

Assumption (A1) is similar to that in Müller and Song (1997). Assumption (A2) is similar
to the undersmoothing condition in Claeskens and Van Keilegom (2003); thus, the subinterval
length h = o(n−1/(2p+1)/ log n) while h−1 = o(n1/(2p+1)+ϑ) for any ϑ > 0. A uniform distri-
bution of X in Assumption (A3) is for the simplicity of proofs, which can be relaxed to
any distribution with continuous and positive density function on [0, 1]. Assumption (A4) is
identical with Mack and Silverman (1982, (C2)(a)). All are typical assumptions for a nonpara-
metric regression, with Assumption (A4) weaker than the corresponding assumption in Härdle
(1989).

Denote by ‖φ‖2 the theoretical L2 norm of a function φ on [0, 1], ‖φ‖2
2 = E{φ2(X)} =∫ 1

0 φ2(x)f (x) dx = ∫ 1
0 φ2(x) dx, and the empirical L2-norm as ‖φ‖2

2,n = n−1∑n
i=1 φ2(Xi).

Corresponding inner products are defined by 〈φ, ϕ〉 = ∫ 1
0 φ(x)ϕ(x)f (x) dx = ∫ 1

0 φ(x)ϕ(x) dx =
E{φ(X)ϕ(X)}, 〈φ, ϕ〉n = n−1∑n

i=1 φ(Xi)ϕ(Xi), for any L2-integrable functions φ, ϕ on [0, 1].
Clearly, E〈φ, ϕ〉n = 〈φ, ϕ〉. We now introduce the B-spline basis for theoretical analysis. The
B-spline basis of G(−1), the space of piecewise constant splines, are indicator functions of inter-
vals Jj , bj,1(x) = Ij (x) = IJj

(x), 0 ≤ j ≤ N . The B-spline basis of G(0), the space of piecewise
linear splines, are {bj,2(x)}Nj=−1

bj,2(x) = K

(
x − tj+1

h

)
, −1 ≤ j ≤ N for K(u) = (1 − |u|)+.

Next define their theoretical norms

cj,n = ‖bj,1‖2
2 =

∫ 1

0
I 2
j (x)dx =

∫ 1

0
Ij (x)dx = h, 0 ≤ j ≤ N,

dj,n = ‖bj,2‖2
2 =

∫ 1

0
K2

(
x − tj+1

h

)
dx =

{
2h/3, 0 ≤ j ≤ N − 1,

h/3, j = −1, N,

〈bj,2, bj ′,2〉 =
∫ 1

0
K

(
x − tj+1

h

)
K

(
x − tj ′+1

h

)
dx =

{
h/6, |j − j ′| = 1,

0, |j − j ′| > 1.
(3)

We introduce the rescaled B-spline basis {Bj,1(x)}Nj=0, {Bj,2(x)}Nj=−1 for G(−1), G(0)

Bj,1(x) ≡ bj,1(x){cj,n}−1/2, j = 0, . . . , N,

Bj,2(x) ≡ bj,2(x){dj,n}−1/2, j = −1, . . . , N. (4)
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The inner product matrix V of the B-spline basis
{
Bj,2(x)

}N
j=−1 is denoted as

V = (vj ′j
)N
j,j ′=−1 = (〈Bj ′,2, Bj,2

〉)N
j,j ′=−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
√

2/4 0√
2/4 1 1/4

1/4 1
. . .

. . .
. . . 1/4

1/4 1
√

2/4

0
√

2/4 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(N+2)×(N+2)

= (lik)
−1
(N+2)×(N+2), (5)

which computed via Equation (3). Denote the inverse of V by S and 3 × 3 diagonal submatrices
of S are expressed as

S = (sj ′j )
N
j,j ′=−1 = V −1, Sj =

⎛
⎜⎝

s(j−2),(j−2) s(j−2),(j−1) s(j−2),j

s(j−1),(j−2) s(j−1),(j−1) s(j−1),j

sj,(j−2) sj,(j−1) sjj

⎞
⎟⎠, j = 1, . . . , N. (6)

To detect jumps in m, one tests the hypothesis H0: m ∈ C(p)[0, 1] vs. H1:m /∈ C[0, 1]. Denote
by ‖c‖2 = (c2

1 + · · · + c2
k)

1/2, the Euclidean norm of the vector c of all the k jump magnitudes,
then under Assumption (A1), one can write alternatively H0: ‖c‖2 = 0 vs. H1: ‖c‖2 > 0. For
m̂p(x) given in Equation (2), p = 1, 2, define the test statistics

T1n = max
0≤j≤N−1

δ̂1j , δ̂1j = |m̂1(tj+1) − m̂1(tj )|
σn,1

,

T2n = max
1≤j≤N

δ̂2j , δ̂2j = |{m̂2(tj+1) + m̂2(tj−1)}/2 − m̂2(tj )|
σn,2,j

, (7)

where

σ 2
n,1 = 2σ 2

nh
, σ 2

n,2,j = σ 2

(
8nh

3

)−1

ζ TSjζ, ζ =
⎛
⎝ 1

−2
1

⎞
⎠ (8)

with Sj defined in Equation (6). To state our main results, denote

dN(α) = 1 − {2 log N}−1

[
log

{
−1

2
log(1 − α)

}
+ 1

2
{log log(N) + log 4π}

]
. (9)

Theorem 2.1 Under Assumptions (A1)–(A4) and H0,

lim
n→∞ P [Tpn > {2 log(N − 2p + 2)}1/2dN−2p+2(α)] = α, p = 1, 2.

A similar result by kernel smoothing with a fixed-design regression model exists in Theorem 3
of Wu and Chu (1993). The proof of that result, however, does not contain sufficient details for us
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to further comment. It is feasible to derive a similar asymptotic result for Tpn under H1 but that is
beyond the scope of this paper and so we leave it to a future work.

3. Implementation

In this section, we describe how to implement in XploRe (Härdle, Hlávka, and Klinke 2000) the
jump points detection procedure by using the results in Theorem 2.1.

Given any sample {(Xi, Yi)}ni=1 from model (1), denote Xmin = min(X1, . . . , Xn) and Xmax =
max(X1, . . . , Xn). Then we transform {Xi}ni=1 onto interval [0, 1] by subtracting each Xi from
Xmin and then dividing by Xmax − Xmin. The definition of m̂p(x) in Equation (2) entails

m̂p(x) ≡
N∑

j=1−p

λ̂′
j,pbj,p(x), p = 1, 2, (10)

where coefficients {λ̂′
1−p,p, . . . , λ̂′

N,p}T are solutions of the following least squares problem

{λ̂′
1−p,p, . . . , λ̂′

N,p}T = argmin
{λ1−p,p,...,λN,p}∈RN+p

n∑
i=1

⎧⎨
⎩Yi −

N∑
j=1−p

λj,pbj,p(Xi)

⎫⎬
⎭

2

.

By Assumption (A2), the number of interior knots N is taken to be N = [n1/3(log n)2/5] for a
constant spline (p = 1), and N = [n1/5(log n)2/5] for a linear spline (p = 2), in which [a] denotes
the integer part of a. Denote the estimator for Yi by Ŷi,p = m̂p(Xi), for i = 1, . . . , n, with m̂p

given in Equation (10), and define the estimator of σ as σ̂p = {∑n
i=1(Yi − Ŷi,p)2/(n − N − p)}1/2.

Basic spline smoothing theory as in Wang and Yang (2009) ensures that σ̂ 2
p →p σ 2, as n → ∞;

hence, Theorem 2.1 holds if one replaces σ by σ̂p. The asymptotic p-value pvalue,p is obtained by
solving the equation Tpn = {2 log(N − 2p + 2)}1/2dN−2p+2(pvalue,p), p = 1, 2 with Tpn defined
in Equation (7) and estimated by replacing σ 2 with σ̂ 2

p , then

pvalue,p = 1 − exp[−2 exp[2 log(N − 2p + 2){1 − {2 log(N − 2p + 2)}−1/2Tpn}
− 2−1{log log(N − 2p + 2) + log 4π}]]. (11)

When the p-value is below a pre-determined α, one concludes that there exist jump points
in m. The jump locations and magnitudes are estimated as follows. We use the BIC criteria
proposed in Xue and Yang (2006) to select the ‘optimal’ N , denoted N̂opt, from [[4n1/3] +
4, min([10n1/3], [n/2] − 1)], which minimises the BIC value BIC(N) = log(σ̂ 2

1 ) + (N + 1) ×
log(n)/n. By letting p = 1 and replacing T1n with δ̂1j , for 0 ≤ j ≤ N − 1 in Equation (11),
we obtain the p-value pvalue,1,j for each δ̂1j . The jump locations τi, 1 ≤ i ≤ k, are estimated by
τ̂i = (tli + tli+1)/2, for pvalue,1,li < α, with ĉi = m̂1(tli+1) − m̂1(tli ) as the estimated jump mag-
nitudes, for 0 ≤ l1, . . . , lk ≤ N − 1. It is apparent that for τi ∈ [tli , tli+1], τ̂i → τi, 1 ≤ i ≤ k, as
n → ∞.

4. Examples

4.1. Simulation example

Here, we examine the finite-sample performance of the procedure described in Section 3
where m(x) has at most one jump. The data set is generated from model (1) with

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Y
a
n
g
,
 
L
i
j
i
a
n
]
 
A
t
:
 
1
9
:
1
1
 
3
 
M
a
r
c
h
 
2
0
1
1
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Table 1. Powers calculated from the test statistic Tpn defined in Equation (7) by constant and
linear splines, respectively, over ns = 500 replications.

Sample β̂2(c) β̂2(c) β̂1(c) β̂1(c)

c σ size n α = 0.05 α = 0.01 α = 0.05 α = 0.01

0 0.2 200 0.100 0.032 0.640 0.280
600 0.062 0.014 0.390 0.140

1000 0.046 0.010 0.220 0.050

0.5 200 0.058 0.012 0.220 0.070
600 0.054 0.006 0.180 0.040

1000 0.050 0.010 0.120 0.030

2 0.2 200 1.000 0.998 1.000 1.000
600 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000

0.5 200 0.942 0.776 0.890 0.680
600 1.000 0.980 1.000 0.970

1000 1.000 1.000 1.000 1.000

Table 2. Computing time (in seconds) per replication over
ns = 500 replications of generating data and detecting jump
by constant and linear spline methods.

Sample size n Constant Linear

200 0.04 0.06
600 0.21 0.30
1000 0.55 0.60

X ∼ U [−1/2, 1/2], ε ∼ N(0, 1), and with m(x) = sin(2πx) + c × I (τ1 ≤ x ≤ 1/2), for τ1 =√
2/4. The noise level σ = 0.2, 0.5, sample size n = 200, 600, 1000 and significant level

α = 0.05, 0.01. Let ns be the number of replications. Denote the asymptotic powers based
on constant and linear splines by β̂p(c), p = 1, 2, calculated from β̂p(c) =∑ns

q=1 I [Tn,p,q >

{2 log(N − 2p + 2)}1/2dN−2p+2(α)]/ns, where Tn,p,q is the qth replication of Tpn, with Tpn given
in Equation (7), and dN(α) given in Equation (9), for p = 1, 2. Table 1 shows values of β̂p(c) for
c = 0 and c = 2.

In Table 1, β̂p(2), p = 1, 2 approach to 1 rapidly. Meanwhile β̂2(0) approaches α as the sample
size increases, which shows a very positive confirmation of Theorem 2.1, in contrast to β̂1(0),
the convergent rate of which is much slower, indicating that the linear spline method outperforms
the constant spline method. Table 1 also shows that the noise level has more influence on the
constant spline method than the linear spline method. Table 2 shows the average computing time
(in seconds) of generating data and detecting jumps with constant and linear spline methods,
which are comparable.

There are 500 replications for n = 200, 600 satisfying pvalue,2 < α = 0.05, with pvalue,2 given
in Equation (11), when c = 2, ns = 500. Figure 1 shows the kernel estimators of the densities of
τ̂1 and ĉ1 given in Section 3 with sample size n = 200 (thick lines) and n = 600 (median lines)
at σ = 0.2. The vertical lines at

√
2/4 and 2 are the standard lines for comparing τ̂1 with τ1

and ĉ1 with c1, respectively. One clearly sees that both of the centres of the density plots move
towards the standard lines with a much narrower spread when the sample size n is increased. The
frequencies over 500 replications for τ1 falling between tl1 and tl1+1 described in Section 3 are
0.994 and 1 for n = 200 and 600, respectively.
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Figure 1. Kernel density plots of τ̂1 in (a) and ĉ1 in (b) over 500 replications of sample size n = 200 (thick solid) and
n = 600 (solid) for which H0 is rejected.
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Figure 2. Plots of the true function m(x) (thick solid curve), spline estimator m̂2(x) (solid curve) and the data scatter
plots at σ = 0.2.

For the visual impression of the actual function estimates, at noise level σ = 0.2 with sample
size n = 600, we plot the spline estimator m̂2(x) (solid curves) for the true functions m(x) (thick
solid curves) in Figure 2. The spline estimators seem rather satisfactory.

4.2. Real-data analysis

We apply the jump detection procedures in Section 3 to the thickness of pennies data set given in
Scott (1992), which consists of measurements in mm of the thickness of 90 US Lincoln pennies.
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Figure 3. The thickness of pennies data (points) and the spline estimator m̂2(x).

There are two measurements taken as the response variable Y each year, from 1945 through
1989. Penny thickness was reduced in World War II, restored to its original thickness sometime
around 1960 and reduced again in the 1970s. The asymptotic p-value pvalue,2 < 10−20. Two
jump points are detected with the p-values 0.014468 and 0.00077337, located around the year
1958 with increased magnitude 2.80 and around the year 1974 with decreased magnitude 3.75,
respectively, which confirms the result in Gijbels et al. (2007). Figure 3 depicts the data points and
the spline estimator m̂2(x) (solid line), which visually confirm these findings. Findings from both
simulated and real data demonstrate the effectiveness of our approach in detecting the existence
of jumps. The plots of m̂2(x) in Figures 2 and 3 give an outline of the true function, without
breaking the curve at the jumps. Obtaining a jump-preserving spline estimator of the true non-
smooth function is beyond the scope of this paper, but makes an interesting topic for further
research.
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Appendix 1

A.1. Preliminaries

Denote by ‖ · ‖∞ the supremum norm of a function r on [0, 1], i.e. ‖r‖∞ = supx∈[0,1] |r(x)|. We denote by the same
letters c, C, any positive constants without distinction. The following extension of Leadbetter et al. (1983, Theorem 6.2.1)
is a key result on the absolute maximum of discrete-time Gaussian processes.

Lemma A1 Let ξ
(n)
1 , . . . , ξ

(n)
n have jointly normal distribution with Eξ

(n)
i ≡ 0, E(ξ

(n)
i )2 ≡ 1, 1 ≤ i ≤ n and there

exist constants C > 0, a > 1, r ∈ (0, 1) such that the correlations rij = r
(n)
ij = Eξ

(n)
i ξ

(n)
j , 1 ≤ i �= j ≤ n satisfy |rij| ≤

min(r, Ca−|i−j |) for 1 ≤ i �= j ≤ n. Then the absolute maximum Mn,ξ = max{|ξ (n)
1 |, . . . , |ξ (n)

n |} satisfies for any τ ∈ R,

P (Mn,ξ ≤ τ/an + bn) → exp(−2e−τ ), as n → ∞, where an = (2 log n)1/2, bn = an − (1/2)a−1
n (log log n + log 4π).

Proof Take ε > 0 such that (2 − ε)(1 + r)−1 = 1 + δ, for some δ > 0. Let τn = τ/an + bn, then τ 2
n /(2 log n) → 1,

as n → ∞, so for large n, τ 2
n > (2 − ε) log n. By the condition |rij| ≤ min(r, Ca−|i−j |) < 1 for i �= j , one has |rij|(1 −

|rij|2)−1/2 ≤ Ca−|i−j |(1 − r2)−1/2. Let Mn,η = max{|η1|, . . . , |ηn|}, where η1, . . . , ηn are i.i.d. copies of N(0, 1). By
Leadbetter et al. (1983, Theorem 1.5.3), P(Mn,η ≤ τn) → exp(−2e−τ ), as n → ∞. The normal comparison lemma
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(Leadbetter et al. (1983, Lemma 11.1.2) entails that

|P(−τn < ξ
(n)
j ≤ τn for j = 1, . . . , n) − P(−τn < ηj ≤ τn for j = 1, . . . , n)|

≤
(

4

2π

) ∑
1≤j<i≤n

|rij|(1 − |rij|2)−1/2 exp

{ −τ 2
n

1 + rij

}
.

|P(Mn,ξ ≤ τn) − P(Mn,η ≤ τn)| ≤ 4

2π

∑
1≤i<j≤n

Ca−|i−j |(1 − r2)−1/2 exp

( −τ 2
n

1 + r

)

≤
(

4

2π

)
C(1 − r2)−1/2

∑
1≤j<i≤n

a−(i−j) exp{−(2 − ε)(1 + r)−1 log n}

=
(

4

2π

)
C(1 − r2)−1/2

n−1∑
k=1

(n − k)a−kn−1−δ ≤ Cn−δ → 0, as n → ∞,

for large n, hence P(Mn,ξ ≤ τn) → exp(−2e−τ ), as n → ∞. �

We break the estimation error m̂p(x) − m(x) into bias and noise. m̂p(x) defined in Equation (2) can be written as
m̂p(x) ≡∑N

j=1−p λ̂j,pBj,p(x), where the coefficients {λ̂1−p,p, . . . , λ̂N,p}T are solutions of the following least squares
problem

{λ̂1−p,p, . . . , λ̂N,p}T = argmin
{λ1−p,p,...,λN,p}∈RN+p

n∑
i=1

⎧⎨
⎩Yi −

N∑
j=1−p

λj,pBj,p(Xi)

⎫⎬
⎭

2

. (A1)

Projecting the relationship in model (1) leads to the following decomposition in G(p−2)

m̂p(x) = m̃p(x) + ε̃p(x), (A2)

m̃p(x) =
N∑

j=1−p

λ̃j,pBj,p(x), ε̃p(x) =
N∑

j=1−p

ãj,pBj,p(x). (A3)

The vectors {λ̃1−p,p, . . . , λ̃N,p}T and {ã1−p,p, . . . , ãN,p}T are solutions to Equation (A1) with Yi replaced by m(Xi) and
σεi , respectively.

Next lemma is from de Boor (2001, p. 149) and Huang (2003, Theorem 5.1).

Lemma A2 There are constants Cp > 0, p ≥ 1 such that for any m ∈ C(p)[0, 1], there exists a function g ∈ G(p−2)[0, 1]
such that ‖g − m‖∞ ≤ Cp‖m(p)‖∞hp and m̃(x) defined in Equation (A3), with probability approaching 1, satisfies
‖m̃p(x) − m(x)‖∞ = O(hp).

A.2. Proof of Theorem 2.1 for p = 1

For x ∈ [0, 1], define its location and relative position indices j (x), δ(x) as j (x) = jn(x) = min{[x/h], N}, δ(x) =
{x − tj (x)}h−1. It is clear that tjn(x) ≤ x < tjn(x)+1, 0 ≤ δ(x) < 1, ∀x ∈ [0, 1) and δ(1) = 1. Since 〈Bj ′,1, Bj,1〉n = 0
unless j = j ′, for Bj,1(x) given in Equation (4). ε̃1(x) in Equation (A3) can be written as

ε̃1(x) =
N∑

j=0

ε∗
j,1Bj,1(x)‖Bj‖−2

2,n, ε∗
j,1 = n−1

n∑
i=1

Bj,1(Xi)σεi .

Let ε̂1(x) =∑N
j=0 ε∗

j,1Bj,1(x), it is easy to prove that E{ε̂1(x)}2 = σ 2/(nh) and for 0 ≤ j ≤ N − 1, E{ε̂1(tj+1) −
ε̂1(tj )}2 = 2σ 2/(nh), which is σ 2

n,1 defined in Equation (8). Define for 0 ≤ j ≤ N − 1, ξ̃n,1,j = σ−1
n,1 {ε̃1(tj+1) − ε̃1(tj )},

ξ̂n,1,j = σ−1
n,1 {ε̂1(tj+1) − ε̂1(tj )}.

Lemma A3 Under Assumptions (A2)–(A4), as n → ∞, sup0≤j≤N−1 |ξ̃n,1,j − ξ̂n,1,j | = Oa.s(n
−1/2h−1/2 log n) =

oa.s(1).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Y
a
n
g
,
 
L
i
j
i
a
n
]
 
A
t
:
 
1
9
:
1
1
 
3
 
M
a
r
c
h
 
2
0
1
1



Journal of Nonparametric Statistics 77

Lemma A4 Under Assumptions (A2)–(A4), there exist {ξ̂ (k)
n,1,j }N−1

j=0 , k = 1, 2, 3 such that as n → ∞, sup0≤j≤N−1 |ξ̂n,1,j

− ξ̂
(1)
n,1,j | + sup0≤j≤N−1 |ξ̂ (2)

n,1,j − ξ̂
(3)
n,1,j | = oa.s (1). {ξ̂ (1)

n,1,j }N−1
j=0 has the same probability distribution as {ξ̂ (2)

n,1,j }N−1
j=0 , and

{ξ̂ (3)
n,1,j }N−1

j=0 is a Gaussian process with mean 0, variance 1 and covariance

cov{ξ̂ (3)
n,1,j , ξ̂

(3)

n,1,j ′ } =
{

−1/2 for |j − j ′| = 1,

0 for |j − j ′| > 1.

Lemmas A3 and A4 follow from Appendix A of Wang and Yang (2009).

Proof of Theorem 2.1 for p = 1 It is clear from Lemma A4 that the Gaussian process {ξ̂ (3)
n,1,j }N−1

j=0 satisfies the con-

ditions of Lemma A1, hence as n → ∞, P {(sup0≤j≤N−1 |ξ̂ (3)
n,1,j | ≤ τ/aN + bN )} → exp(−2e−τ ). By letting τ =

− log{−(1/2) log(1 − α)} and using the definition of aN , bN and dN (α), we obtain

lim
n→∞ P

{
sup

0≤j≤N−1
|ξ̂ (3)

n,1,j | ≤ − log

{
−
(

1

2

)
log(1 − α)

}
(2 log N)−1/2

+ (2 log N)1/2 − (1/2)(2 log N)−1/2(log log N + log 4π)

}
= 1 − α

lim
n→∞ P

{
sup

0≤j≤N−1
|ξ̂ (3)

n,1,j | ≤ (2 log N)1/2dN (α)

}
= 1 − α.

By Lemmas A3 and A4, we have limn→∞ P {sup0≤j≤N−1 |ξ̃n,1,j | ≤ (2 log N)1/2dN (α)} = 1 − α, which implies for
0 ≤ j ≤ N − 1

lim
n→∞ P

{
dN (α)−1(2 log N)−1/2σ−1

n,1 sup
0≤j≤N−1

|ε̃1(tj+1) − ε̃1(tj )| ≤ 1

}
= 1 − α.

Lemma A2 entails that under H0 sup0≤j≤N−1 |m̃1(tj ) − m(tj )| = Op(h) and sup0≤j≤N−1 |m(tj+1) − m(tj )| = Op(h),
which imply that

σ−1
n,1 (log N)−1/2 sup

0≤j≤N−1
|m(tj+1) − m(tj )| = Op{(nh)1/2(log N)−1/2h} = op{(log n)−2}.

Thus, by Equation (A2), m̂1(tj+1) − m̂1(tj ) = {m̃1(tj+1) − m(tj+1)} − {m̃1(tj ) − m{tj }} + {m(tj+1) − m(tj )} +
{ε̃1(tj+1) − ε̃1(tj )}, then for dN (α) defined in Equation (9),

lim
n→∞ P

{
sup

0≤j≤N−1
|m̂1(tj+1) − m̂1(tj )| ≤ σn,1(2 log N)1/2dN (α)

}

= lim
n→∞ P

{
sup

0≤j≤N−1
|ε̃1(tj+1) − ε̃1(tj )| ≤ σn,1(2 log N)1/2dN (α)

}
= 1 − α. �

Appendix 2

B.1. Preliminaries

The following lemma from Wang andYang (2009) shows that multiplication byV defined in Equation (5) behaves similarly
to multiplication by a constant. We use |T | to denote the maximal absolute value of any matrix T .

Lemma B1 Given matrix � = V + �, in which � = (γjj ′ )N
j,j ′=−1 satisfies γjj ′ ≡ 0 if |j − j ′| > 1 and |�| p→ 0. Then

there exist constants c, C > 0 independent of n and �, such that with probability approaching 1

c|ξ| ≤ |�ξ| ≤ C|ξ|, C−1|ξ| ≤ |�−1ξ| ≤ c−1|ξ|, ∀ξ ∈ RN+2. (B1)

To prove Theorem 2.1 for p = 2, we need the below result (Kılıç 2008, Corollary 16), which gives an explicit formula
for the inverse of symmetric tridiagonal matrix.
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Lemma B2 For any symmetric tridiagonal matrix Gn =

⎛
⎜⎜⎜⎜⎜⎝

x1 y1

y1 x2
. . .

. . .
. . . yn−1

yn−1 xn

⎞
⎟⎟⎟⎟⎟⎠, the inverse of the matrix Gn,

G−1
n = [wij] is given by

wij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Cb
i )−1 +

n∑
k=i+1

(Cb
k )−1

k−1∏
t=i

(Cb
t )−2y2

t , i = j

(−1)i+j

⎧⎨
⎩

i−1∏
t=j

(Cb
t )−1yt

⎫⎬
⎭wii , i > j

in which Cb
1 = x1, Cb

n = xn − (Cb
n−1)

−1y2
n−1, n = 2, 3, . . ..

Lemma B3 There exists a constant Cs > 0, such that
∑N

j=−1 |sj ′j | ≤ Cs, and 17/16 ≤ sjj ≤ 5/4, where sj ′j , 0 ≤
j, j ′ ≤ N − 1, is the element of S defined in Equation (6).

Proof By Equation (B1), let ξ̃j ′ = {sgn(sj ′j )}Nj=−1, then
∑N

j=−1 |sj ′j | ≤ |Sξ̃j ′ | ≤ Cs |ξ̃j ′ | = Cs, ∀j ′ = −1, 0, . . . , N .

Applying Lemma B2 to V with x−1 = · · · = xN = 1, y−1 = yN−1 = √
2/4, y0 = · · · = yN−1 = 1/4, we have sjj =

(Cb
j )−1 +∑N

k=j+1(C
b
k )−1∏k−1

t=j (Cb
t )−2y2

t . By mathematical induction, one obtains that 9/10 ≤ Cb
j ≤ 1, for 0 ≤ j ≤

N − 1. Therefore, 1 ≤ (Cb
j )−1 ≤ 10/9, and for 0 ≤ j ≤ N − 1,

sjj ≥ 1 +
N∑

k=j+1

k−1∏
t=j

y2
t ≥ 1 +

N∑
k=j+1

(16)−(k−j) ≥ 17

16
,

sjj ≤ 10

9
+
(

10

9

) N∑
k=j+1

(
1

9

)k−j

≤ 5

4
.

�

B.2. Variance calculation

Vector ã2 = (ã−1,2, . . . , ãN,2)
T given in Equation (A3) solves the normal equations,

(〈Bj,2, Bj ′,2〉n)Nj,j ′=−1ã2 =
(

n−1
n∑

i=1

Bj,2(Xi)σεi

)N

j=−1

,

for Bj,2(x) given in Equation (4). In other words, ã2 = (V + B̃)−1(n−1∑n
i=1 Bj,2(Xi)σεi )

N
j=−1, where B̃ =

(〈Bj,2, Bj ′,2〉n)Nj,j ′=−1 − V satisfies |B̃| = Op(
√

n−1h−1 log(n)) according to Section B.2 of the supplement to Wang
and Yang (2009).

Now define â2 = (â−1,2, . . . , âN,2)
T by replacing (V + B̃)−1 with V−1 = S in the above formula, i.e. â2 =

(
∑N

j=−1 sj ′j n−1∑n
i=1 Bj,2(Xi)σεi )j ′=−1,...,N , and define for x ∈ [0, 1]

ε̂2(x) =
N∑

j=−1

âj,2Bj,2(x) =
N∑

j,j ′=−1

sj ′j n
−1

n∑
i=1

Bj,2(Xi)σεiBj ′,2(x),

ξ̂2,j = {ε̂2(tj+1) + ε̂2(tj−1)}/2 − ε̂2(tj ), 2 ≤ j ≤ N − 1, (B2)

D =

⎛
⎜⎜⎜⎜⎜⎝

0 1 −2 1 0 0
.
.
.

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

.

.

.

0 0 1 −2 1 0

⎞
⎟⎟⎟⎟⎟⎠

(N−2)×(N+2)

. (B3)
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Lemma B4 With S and D given in Equation (6) and (B3), {ξ̂2,j }N−1
j=2 has a covariance matrix

[cov(ξ̂2,j , ξ̂2,j ′ )]N−1
j,j ′=2 = σ 2

(
8nh

3

)−1

DSDT. (B4)

Proof For 0 ≤ j, j ′ ≤ N + 1, ε̂2(tj ) =∑N
k,k′=−1 sk′kn−1∑n

i=1 Bk,2(Xi)σεiBk′,2(tj )

= σ

N∑
k=−1

n−1
n∑

i=1

Bk,2(Xi)εi s(j−1),kB(j−1),2(tj ).

E[ε̂2(tj )ε̂2(tj ′ )] = σ 2E

[
N∑

k=−1

n−1
n∑

i=1

Bk,2(Xi)εi sj−1,kBj−1,2(tj )

]

×
⎡
⎣ N∑

k′=−1

n−1
n∑

i=1

Bk′,2(Xi)εi sj ′−1,k′Bj ′−1,2
(
tj ′
)⎤⎦

= σ 2n−1
N∑

k,k′=−1

Bj−1,2(tj )Bj ′−1,2
(
tj ′
)
sj−1,ksj ′−1,k′EBk,2(X)Bk′,2(X)

= σ 2n−1
N∑

k,k′=−1

Bj−1,2(tj )Bj ′−1,2
(
tj ′
)
sj−1,ksj ′−1,k′vk,k′

= σ 2n−1Bj−1,2(tj )Bj ′−1,2
(
tj ′
) N∑

k′=−1

sj ′−1,k′
N∑

k=−1

sj−1,kvk,k′

= σ 2n−1Bj−1,2(tj )Bj ′−1,2
(
tj ′
) N∑

k′=−1

sj ′−1,k′δj−1,k′

= σ 2n−1Bj−1,2(tj )Bj ′−1,2
(
tj ′
)
sj ′−1,j−1 = σ 2n−1d

−1/2
j−1,nd

−1/2
j ′−1,n

sj ′−1,j−1.

By definitions of ξ̂2,j and dj,n in Equations (B2) and (3), for 2 ≤ j, j ′ ≤ N − 1, E(ξ̂2,j ξ̂2,j ′ ) is

σ 2
(

8nh

3

)−1

(sj ′,j + sj ′−2,j − 2sj ′−1,j + sj ′,j−2 + sj ′−2,j−2 − 2sj ′−1,j−2 − 2sj ′,j−1 − 2sj ′−2,j−1 + 4sj ′−1,j−1)

= σ 2
(

8nh

3

)−1

(1 − 2 1)

⎛
⎜⎝

sj ′−2,j−2 sj ′−2,j−1 sj ′−2,j

sj ′−1,j−2 sj ′−1,j−1 sj ′−1,j

sj ′,j−2 sj ′,j−1 sj ′,j

⎞
⎟⎠ (1 − 2 1)T.

Therefore, for 2 ≤ j, j ′ ≤ N − 1, [cov(ξ̂2,j , ξ̂2,j ′ )]N−1
j,j ′=2 = σ 2(8nh/3)−1DSDT. �

Lemma B5 For 2 ≤ j ≤ N − 1, σ 2
n,2,j defined in Equation (8) satisfies that cσ (8nh/3)−1σ 2 ≤ σ 2

n,2,j ≤
Cσ (8nh/3)−1σ 2, for cσ = (65/8)(17/16), Cσ = 100/9.

Proof It follows from Equation (B4) that σ 2
n,2,j = Eξ̂2

2,j . Then by Lemmas B2 and B4, for 2 ≤ j ≤ N − 1,

{σ 2(8nh/3)−1}−1σ 2
n,2,j is

sj,j − 4sj,j−1 + 2sj,j−2 + 4sj−1,j−1 − 4sj−1,j−2 + sj−2,j−2

= sj−2,j−2 + 4{(Cb
j−2)

−1yj−2 + 1}sj−1,j−1 + {2(Cb
j−2C

b
j−1)

−1yj−2yj−1 + 4(Cb
j−1)

−1yj−1 + 1}sj,j ,
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thus,

σ 2
n,2,j ≤

{
1 + 4

(
1

3
+ 1

)
+
(

2

9
+ 4

3
+ 1

)}(
5

4

)
σ 2
(

8nh

3

)−1

=
(

100

9

)(
8nh

3

)−1

σ 2,

σ 2
n,2,j ≥

{
1 + 4

(
1

4
+ 1

)
+
(

2

16
+ 1 + 1

)}(
17

16

)
σ 2
(

8nh

3

)−1

=
(

65

8

)(
17

16

)(
8nh

3

)−1

σ 2. �

B.3. Proof of Theorem 2.1 for p = 2

Several lemmas will be given below for proving Theorem 2.1 for p = 2. With ε̃2(x), ξ̂2,j and σn,2,j defined in
Equations (A3), (B2) and (8), define for 2 ≤ j ≤ N − 1

ξ̃n,2,j = σ−1
n,2,j

[ {ε̃2(tj+1) + ε̃2(tj−1)}
2 − ε̃2(tj )

]
, ξ̂n,2,j = σ−1

n,2,j ξ̂2,j , (B5)

Lemma B6 Under Assumptions (A2)–(A4), as n → ∞, sup2≤j≤N−1 |ξ̂n,2,j − ξ̃n,2,j | = Oa.s(
√

log n/(nh)) = oa.s(1).

Lemma B7 Under Assumptions (A2)–(A4), there exist {ξ̂ (k)
n,2,j }N−1

j=2 , k = 1, 2, 3, such that as n → ∞, sup2≤j≤N−1 |ξ̂n,2,j

−ξ̂
(1)
n,2,j | + sup2≤j≤N−1 |ξ̂ (2)

n,2,j − ξ̂
(3)
n,2,j | = oa.s(1). ξ̂ (1)

n,2,j has the same probability distribution as ξ̂
(2)
n,2,j . {ξ̂ (3)

n,2,j } is a Gaus-

sian process with mean 0, variance 1, covariance r
ξ

j,j ′ = cov(ξ̂
(3)
n,2,j , ξ̂

(3)

n,2,j ′ ) = σ−1
n,2,j σ

−1
n,2,j ′E(ξ̂2,j ξ̂2,j ′ ) for which there

exist constants 0 < C, 0 < r < 1 such that for large n, |rξ

j,j ′ | ≤ min(r, C3−|j−j ′ |), 2 ≤ j, j ′ ≤ N − 1.

Proof We only prove |rξ

j,j ′ | ≤ min(r, C3−|j−j ′ |). Lemma B6 and the rest of Lemma B7 follow from Appendix 2 of the
supplement to Wang and Yang (2009). By Equation (B4),

{
σ 2
(

8nh

3

)−1
}−1

E(ξ̂2,j ξ̂2,j ′ ) = sj ′,j + sj ′−2,j − 2sj ′−1,j + sj ′,j−2 + sj ′−2,j−2

− 2sj ′−1,j−2 − 2sj ′,j−1 − 2sj ′−2,j−1 + 4sj ′−1,j−1.

By Lemma B2, for−1 ≤ j ′ < j ≤ N , sj,j ′ = (−1)j+j ′ ∏j−1
t=j ′ (Cb

t )−1yt sjj, then for 2 ≤ j, j ′ ≤ N − 1 and j − j ′ > 2,
by Lemma B3,

{
σ 2
(

8nh

3

)−1
}−1

|E[ξ̂2,j ξ̂2,j ′ ]|

=
∣∣∣∣∣∣(−1)j+j ′ {

(Cb
j ′−2)

−1yj ′−2 + 2(Cb
j ′−1)

−1yj ′−1 + 1
}

×
{
sj−2,j−2 + 2(Cb

j−2)
−1yj−2sj−1,j−1 + (Cb

j−2C
b
j−1)

−1yj−2yj−1sj,j

} j−3∏
t=j ′

(Cb
t )−1yt

∣∣∣∣∣∣
≤
(

5

4

)(
1

3
+ 2

3
+ 1

){
1 + 2

3
+
(

1

3

)2
}

3−(j−j ′−2) ≤ 40 × 3−(j−j ′).

By Lemma B5, {σ 2(8nh/3)−1}−1σ 2
n,2,j ≥ (65/8)(17/16), for 2 ≤ j ≤ N − 1. Therefore, for 2 ≤ j, j ′ ≤ N − 1 and

j − j ′ > 2, |rξ

j,j ′ | ≤ C3−(j−j ′) ≤ r < 1, with C = 40(8/65)(16/17) and r = 40(8/65)(16/17)/33 < 1. For j − j ′ =
1, 2 , the result can be proved following the same procedure above. �
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Proof of Theorem 2.1 for p = 2 It is clear from Lemma B7 that the Gaussian process {ξ̂ (3)
n,2,j }N−1

j=2 satisfies the conditions

of Lemma A1, hence as n → ∞, P(sup2≤j≤N−1 |ξ̂ (3)
n,2,j | ≤ τ/aN + bN ) → exp(−2e−τ ). By Lemmas B6 and B7, with

τ = − log{−(1/2) log(1 − α)} and using the definitions of aN and bN , we obtain

lim
n→∞ P

(
sup

2≤j≤N−1
|ξ̃n,2,j | ≤ {2 log(N − 2)}1/2dN−2(α)

)
= 1 − α,

for any 0 < α < 1, ξ̂n,2,j and dN (α) defined in Equations (B5) and (9). By Equations (A2) and (B2), {m̂2(tj+1) +
m̂2(tj−1)}/2 − m̂2(tj ) is

{m̃2(tj+1) − m(tj+1)}
2

+ {m̃2(tj−1) − m(tj−1)}
2

− {m̃2(tj ) − m(tj )} +
[ {m(tj+1) + m(tj−1)}

2
− m(tj )

]
+ ξ̂2,j+1.

Now Lemma A2 implies that under H0, ‖m̃2 − m‖∞ = Op(h2), hence

(nh)1/2{log(N − 2)}−1/2 sup
2≤j≤N−1

∣∣∣∣ {m̃2(tj+1) − m(tj+1)}
2

+ {m̃2(tj−1) − m(tj−1)}
2

− {m̃2(tj ) − m(tj )}
∣∣∣∣

= Op[(nh)1/2{log(N − 2)}−1/2h2] = op{(log n)−3}.

By Taylor expansion, sup2≤j≤N−1 |{m(tj+1) + m(tj−1)}/2 − m(tj )| = Op(h2) under H0 , as n → ∞. Hence, (nh)1/2

{log(N − 2)}−1/2 sup2≤j≤N−1 |{m(tj+1) + m(tj−1)}/2 − m(tj )| = Op[√nh{log(N − 2)}−1/2h2] = op{(log n)−3}. By
the above results, for T2n defined in Equation (7), limn→∞ P {T2n ≤ {2 log(N − 2)}1/2dN−2(α)} = 1 − α. �
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