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A smooth kernel estimator is proposed for multivariate cumulative distribution functions (cdf), extending
the work of Yamato [H. Yamato, Uniform convergence of an estimator of a distribution function, Bull.
Math. Statist. 15 (1973), pp. 69–78.] on univariate distribution function estimation. Under assumptions
of strict stationarity and geometrically strong mixing, we establish that the proposed estimator follows
the same pointwise asymptotically normal distribution of the empirical cdf, while the new estimator is a
smooth instead of a step function as the empirical cdf. We also show that under stronger assumptions the
smooth kernel estimator has asymptotically smaller mean integrated squared error than the empirical cdf,
and converges to the true cdf uniformly almost surely at a rate of (n−1/2 log n). Simulated examples are
provided to illustrate the theoretical properties. Using the smooth estimator, survival curves for US gross
domestic product (GDP) growth are estimated conditional on the unemployment growth rate to examine
how GDP growth rate depends on the unemployment policy. Another example of gold and silver price
returns is given.

Keywords: bandwidth; Berry–Esseen bound; GDP; gold price return; kernel; mean integrated squared
error; rate of convergence; silver price return; strongly mixing; survival function; unemployment rate

1. Introduction

The estimation of probability density functions (pdf) and cumulative distribution functions (cdf)
occupies a central place in applied data analysis in the social sciences. While many statisticians and
econometricians are familiar with various smooth nonparametric estimators of pdf, the smooth
estimation of cdf has not been investigated as much, see Li and Racine [1], Sections 1.4 and
1.5. To properly define the problem, let {Xi = (Xi1, . . . , Xid)

T}ni=1 be a geometrically α-mixing
and strictly stationary sequence of d-dimensional variables, with a common pdf f ∈ C(p+1)(Rd)

and cdf F ∈ C(p+d+1)(Rd), in which p is an odd integer. Traditionally, F is estimated by the
empirical cdf F̂ (x) = n−1 ∑n

i=1 I {Xi ≤ x}, whose theoretical properties have been well known.

One obvious drawback of F̂ is that it is a step function even when the true cdf F is smooth.
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Yamato [2] proposed a smooth estimator of F by integrating a kernel density estimator of the
density f . To be precise, define the following kernel estimator of F

F̂ (x) = F̂n(x) =
∫ x

−∞
f̂ (u)du = n−1

n∑
i=1

∫ x

−∞
Kh(Xi − u)du, ∀x ∈ Rd (1)

where f̂ (u) is the standard d-dimensional kernel density estimator (kde) of f (u) (see [3])

f̂ (u) = n−1
n∑

i=1

Kh(Xi − u), Kh(u) =
d∏

α=1

1

hα

K

(
uα

hα

)
, u = (u1, . . . , ud)

T

in which h = (h1, . . . , hd)
T are positive numbers depending on the sample size n, called

bandwidths.
Theoretical properties of F̂ (x) as an estimator of the unknown true distribution function F(x)

have been investigated by several authors for the case of d = 1 and under i.i.d assumptions, see
e.g.Yamato [2], Reiss [4], Falk [5] and more recently Cheng and Peng [6]. For feasible econometric
applications of univariate kernel estimation of cdf, such as to the testing of stochastic dominance,
see Li and Racine [1, p. 23] and the references therein.

In this paper, we examine under strong mixing assumption and for arbitrary dimension d, the
local property of F̂ (x) in terms of pointwise asymptotic distribution and its global property in
terms of mean integrated squared error (MISE) and maximal deviation. We have (1) proven that
the smooth estimator F̂ (x) behaves asymptotically similar to the empirical cdf F̂ (x) at any point x,
(2) obtained its asymptotic mean integrated squared error (AMISE) and (3) established its uniform
almost sure convergence rate.

The paper is organised as follows. In Section 2, we give Theorems 1, 2 and 3, the main results on
pointwise, MISE and uniform asymptotics. In Section 3, we describe a data-driven rule to select
the asymptotically optimal bandwidth vector h, which makes the MISE of F̂ asymptotically
smaller than that of the empirical cdf F̂ according to Theorem 5, another compelling reason that
F̂ is preferable over F̂ other than smoothness. In Section 4, we present Monte Carlo evidence that
corroborates with the theory and illustrates the use of F̂ with two real data examples. The first
real data example illustrates the stochastic dependence of gross domestic product (GDP) growth
rate on the unemployment growth rate in the US economy. The second example shows that gold
and silver are substitute goods and their prices are strongly associated. All technical proofs are in
the Appendix.

2. Asymptotic results

Throughout this paper, we denote

hmax = max(h1, . . . , hd), hprod = h1 × · · · × hd

and for any x ∈ R, K̃(x) = ∫ x

−∞ K(u)du, and K̃(x) = ∏d
α=1 K̃(xα) for any vector x =

(x1, . . . , xd)
T. Then K̃(x) ≡ 0 unless x ≥ −1 and K̃(x) ≡ 1 if x ≥ 1, where for any two vec-

tors x = (x1, . . . , xd)
T, y = (y1, . . . , yd)

T, x ≥ y if and only if xα ≥ yα, ∀α = 1, . . . , d. It is
easily verified that

∫ 1
−1 K̃(w)dw = 1. We also denote μp+1(K) = ∫ 1

−1 K(u)up+1du, D(K) =
1 − ∫ 1

−1 K̃2(w)dw. For any vector x = (x1, . . . , xd)
T and ∀α = 1, . . . , d, we denote x_α =

(x1, . . . , xα−1, xα+1, . . . , xd)
T and with slight abuse of notation, write x = (xα, x_α)T.
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We next list some basic assumptions.

(A1) The cumulative distribution function F ∈ C(p+d+1)(Rd), in which p is an odd integer, while
all (p + d + 1)-th partial derivatives of F belong to L1(R

d) and maxx∈Rd |f (x)| ≤ C.
(A2) There exist positive constants K0 and λ0 such thatα(k) ≤ K0 exp (−λ0k) holds for all k,

where the kth order strong mixing coefficient of the strictly stationary process {Xs}∞s=−∞ is
defined as

α(k) = sup
B∈σ {Xs ,s≤t},C∈σ {Xs ,s≥t+k}

|P(B ∩ C) − P(B)P (C)|, k ≥ 1.

(A3) As n → ∞, nhprod → ∞, n1/2hprod/(log n)1/2 + n1/2h
p+1
max → 0.

(A4) The univariate kernel function K(·) is of (p + 1)-th order, supported on [−1, 1], Lipschitz
continuous.

Assumptions (A1)–(A4) are all typical conditions in time series smoothing literature, see Bosq
[7, Chap. 2] for similar or even stronger assumptions. Elementary arguments show that D(K) > 0
under Assumption (A4).

The following theorem concerns the asymptotic distribution of F̂ given in Equation (1) at any
x ∈ Rd .

THEOREM 1 Under Assumptions (A1)–(A4), ∀x ∈ Rd as n → ∞√
nV −1(x)(F̂ (x) − F(x)) −→d N(0, 1),

where

V (x) =
∞∑

l=−∞
γ (l), γ (l) = EI {Xi ≤ x}I {Xi+l ≤ x} − F 2(x).

Theorem 1 shows that the smooth estimator F̂ (x) has asymptotically the same distribution as
the empirical cdf F̂ (x). In particular, for i.i.d. process {Xs}∞s=−∞, the asymptotic variance function
V (x) reduces to the more familiar form of γ (0) = F(x){1 − F(x)}.

The global performance of F̂ (x) as an estimator of F(x) can be measured in terms of MISE
and maximal deviation

MISE(F̂ ) = MISE(F̂ ; h) = E

∫
{F̂ (x) − F(x)}2dF(x), (2)

Dn(F̂ ) = Dn(F̂ ; h) = sup
x∈Rd

|F̂ (x) − F(x)|. (3)

The next two theorems give an asymptotic formula of MISE(F̂ ) and an almost sure rate of Dn(F̂ ).

THEOREM 2 Under Assumptions (A1)–(A4), as n → ∞,

MISE(F̂ ; h) = AMISE(F̂ ; h) + o(h2p+2
max + n−1hmax)

in which the AMISE is

AMISE(F̂ ; h) =
∫

V (x)dF (x)

n
+ μ2

p+1(K)

(p + 1)!2
d∑

α,β=1

hp+1
α h

p+1
β Bαβ,p+1(F )

− D(K)
∑d

α=1 hαCα(F )

n
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664 R. Liu and L. Yang

with

Bαβ,p+1(F ) =
∫

∂p+1F(x)

∂x
p+1
α

∂p+1F(x)

∂x
p+1
β

dF (x), Cα(F ) =
∫

∂F (x)

∂xα

dF (x), ∀α, β = 1, . . . , d.

THEOREM 3 Under Assumptions (A1)–(A4), as n → ∞, Dn(F̂ ) = Oa.s.(n
−1/2 log n) while for

i.i.d. X1, . . . , Xn, Dn(F̂ ) = Oa.s.(n
−1/2(log n)1/2).

The first term n−1
∫

V (x)dF (x) in the formula of AMISE(F̂ ; h) is the exact MISE of the
empirical cdf F̂ . We are unaware of any published results on the MISE or the strong uniform rate of
convergence for smooth estimation of multivariate distribution function based on strongly mixing
data, as in Theorems 2 and 3. Since Assumptions (A1)–(A4) are mild, these strong theoretical
results hold for most multiple time series data with continuous distributions.

In the next section we describe how Theorem 2 is used to compute a data-driven bandwidth
vector for implementing the smoothed estimator F̂ .

3. Bandwidth selection

To have insight into the minimisation of AMISE(F̂ ; h) given in Theorem 2, define a function
Q : Rd+ × M+(d) × Rd+ for elementwise positive vectors v = (v1, . . . , vd)

T, a = (a1, . . . , ad)
T ∈

Rd+ = (0, +∞)d and M = (Mαβ)dα,β=1 ∈ M+(d), the set of all positive definite d × d matrices:

Q(v, M, a) =
d∑

α,β=1

vαvβMαβ −
d∑

α=1

aαv1/(p+1)
α = vT Mv − aT v1/(p+1)

in which v1/(p+1) = (v
1/(p+1)

1 , . . . , v
1/(p+1)

d )T. In the following, we denote for any d-dimensional
vector a = (a1, . . . , ad)

T, the d × d diagonal matrix whose (αα)-th element is aα, α = 1, . . . , d

as diag(a). The following theorem is easily proved similar to Yang and Tschernig [8].

THEOREM 4 (i) The gradient and Hessian matrices of Q(v, M, a) with respect to v are

∂

∂v
Q(v, M, a) = {diag(Mαα)dα=1 + M}v − 1

p + 1
diag(a)v1/(p+1)−1,

∂2

∂v∂vT
Q(v, M, a) = diag(Mαα)dα=1 + M + p

(p + 1)2
diag

(
aαv1/(p+1)−2

α

)d
α=1

the Hessian matrix of Q(v, M, a) is positive definite, hence the function Q(v, M, a) is strictly
convex in v. (ii) For any a ∈ Rd+, M ∈ M+(d), there exists a unique v ∈ Rd+ which min-
imises Q(v, M, a) , denoted as v(M, a), which satisfies (∂/∂v)Q(v, M, a) = 0. In addition,
Q{v(M, a), M, a} < 0 for any a ∈ Rd+, M ∈ M+(d). (iii) Finally, for any cM, ca > 0

Q
(
c(p+1)/(2p+1)

a c
−(p+1)/(2p+1)

M v, cMM, caa
) = c(2p+2)/(2p+1)

a c
−1/(2p+1)

M Q(v, M, a),

v(cMM, caa) = c(p+1)/(2p+1)
a c

−(p+1)/(2p+1)

M v(M, a).

To make use of Theorem 4, we make an additional assumption on F ,

(A5) The matrices Bp+1(F ) = {Bαβ,p+1(F )}dα,β=1 ∈ M+(d) and C(F ) = {Cα(F )}dα=1 ∈ Rd+.
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Theorem 2, Theorem 4(ii) and Assumption (A5) ensure the existence of a unique optimal
bandwidth vector hopt that minimises

AMISE(F̂ ; h) =
∫

V (x)dF (x)

n
+ Q

(
hp+1,

μ2
p+1(K)

(p + 1)!2 Bp+1(F ), n−1D(K)C(F )

)
.

Theorem 4(iii) then implies that

hopt = hopt(n, K, F ) = v1/(p+1)

(
μ2

p+1(K)

(p + 1)!2 Bp+1(F ), n−1D(K)C(F )

)

= n−1/(2p+1)

{
μ2

p+1(K)

D(K)(p + 1)!2
}−1/(2p+1)

v1/(p+1)(Bp+1(F ), C(F )).

Thus to obtain the optimal bandwidth vector hopt, one computes exactly the factors involving n

and K in the previous expression, and estimate the following factor

θ = θ(F ) = (θ1, . . . , θd)
T = (θ1(F ), . . . , θd(F ))T = v1/(p+1)(Bp+1(F ), C(F )).

The next theorem follows from the negativity result in Theorem 4(ii).

THEOREM 5 Under Assumptions (A1)–(A5), F̂ has asymptotically smaller MISE than the
empirical cdf F̂ . Specifically, MISE(F̂ ) = n−1

∫
V (x)dF (x) and as n → ∞

MISE(F̂ ; hopt) = MISE(F̂ ) + n−(2p+2)/(2p+1)C(K, F ) + o(n−(2p+2)/(2p+1)),

C(K, F ) =
{

D(K)2pμ2
p+1(K)

(p + 1)!2
}−1/(2p+1)

Q(v(Bp+1(F ), C(F )), Bp+1(F ), C(F )) < 0.

Following Yang and Tschernig [8], we define a plug-in asymptotic optimal bandwidth vector

ĥopt =
{

nμ2
p+1(K)

C(K)(p + 1)!2
}−1/(2p+1)

v1/(p+1)(B̂p+1(F ), Ĉ(F ))

in which the plug-in estimator of the unknown parameter θ, θ̂ = v1/(p+1)(B̂p+1(F ), Ĉ(F )), is com-
puted by the Newton–Raphson method using the gradient and Hessian formulae of Theorem 4 and
where the plug-in estimators of the unknown matrices Bp+1(F ) = {Bαβ,p+1(F )}dα,β=1, C(F ) are

B̂p+1(F ) = {B̂αβ,p+1(F )}dα,β=1, Ĉ(F ) = {Ĉα(F )}dα=1,

B̂αβ,p+1(F ) = n−1
n∑

j=1

⎧⎨⎩n−1
n∑

i=1

K(p)
gα

(Xjα − Xiα)

d∏
γ=1,γ 
=α

∫ Xjγ

−∞
Kgγ

(xγ − Xiγ )dxγ

⎫⎬⎭
×
⎧⎨⎩n−1

n∑
i=1

K(p)
gβ

(Xjβ − Xiβ)

d∏
γ=1,γ 
=β

∫ Xiγ

−∞
Kgγ

(xγ − Xiγ )dxγ

⎫⎬⎭ ,

Ĉα(F ) = n−1
n∑

j=1

⎧⎨⎩n−1
n∑

i=1

Kgα
(Xjα − Xiα)

∏
γ=1,γ 
=α

∫ Xjγ

−∞
Kgγ

(xγ − Xiγ )dxγ

⎫⎬⎭ .

The pilot bandwidth vector g = (g1, . . . , gd)
T is the simple rule-of-thumb bandwidth for

multivariate density estimation in Scott [9].
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In the next section, we present Monte Carlo evidence for Theorems 2 and 3, and illustrate the
use of the smooth estimator F̂ (x) with real data examples.

4. Examples

In all computing of this section, we use the quartic kernel K(u) = 15/16 × (1 − u2)2I (|u| ≤ 1)

with p = 1 and the plug-in bandwidth vector ĥopt described in the previous section. We have not
experimented with other choices of K and p due to limit of space and as these choices are in
general not as crucial as that of the bandwidth, see Fan and Yao [10].

4.1. A simulated example

We examine in this subsection the asymptotic results of Theorems 2 and 3 via simulation. The
data are generated from the following vector autoregression (VAR) equation

Xt = aXt−1 + εt , εt ∼ N(0, 
), 2 ≤ t ≤ n, 
 =
[

1 ρ

ρ 1

]
, 0 ≤ a, ρ < 1

with stationary distribution Xt = (Xt1, Xt2)
T ∼ N(0, (1 − a2)−1
). Clearly, higher values of a

correspond to stronger dependence among the observations, and in particular, if a = 0, the data
is i.i.d. The parameter ρ controls the orientation of the bivariate cdf F , and in particular, if
a = ρ = 0, then F is a bivariate standard normal distribution. To cover various scenarios, we
have experimented with three cases: ρ = 0, a = 0; ρ = 0.5, a = 0.2; ρ = 0.9, a = 0.2.

A total of 100 samples {Xt }nt=1 of sizes n = 50, 100, 200, 500 are generated, and F̂ is computed
using the optimal bandwidth vector ĥopt described in Section 3. Of interest are the means over
the 100 replications of the global maximal deviation Dn(F̂ ) defined in Equation (3), denoted as
D̄n(F̂ ), and the MISE(F̂ ; ĥopt) defined in Equation (2). Both measures are listed in Table 1. As
one examines in Table 1, both D̄n(F̂ ) and MISE(F̂ ; ĥopt) values decrease as sample size increases
in all cases, corroborating with Theorems 2 and 3. Also listed in Table 1 are the differences of the
same measures for the empirical cdf F̂ against those of F̂ , which are always positive regardless of
the data generating process (i.e. for different combinations of a, ρ) and measures of deviation (i.e.
D̄n or MISE). This corroborates with Theorem 5 that F̂ has asymptotically smaller MISE than F̂ .

Table 1. D̄n and mean integrated squared error (MISE) of F̂ and F̂ .

n D̄n(F̂ ) D̄n(F̂ ) − D̄n(F̂ ) MISE(F̂ ) MISE(F̂ ) − MISE(F̂ )

ρ = 0, a = 0 50 0.10137 0.05528 0.15751 0.02100
100 0.07385 0.0352 0.07202 0.01046
200 0.05107 0.02292 0.03350 0.00411
500 0.03482 0.0122 0.01421 0.00184

ρ = 0.5, a = 0.2 50 0.10761 0.05109 0.20178 0.03239
100 0.07514 0.03423 0.08897 0.01539
200 0.05271 0.02204 0.04169 0.00409
500 0.03714 0.01121 0.01936 0.00236

ρ = 0.9, a = 0.2 50 0.10687 0.03561 0.20294 0.03549
100 0.07339 0.0243 0.08635 0.01479
200 0.05038 0.01575 0.04008 0.00628
500 0.03668 0.00837 0.02028 0.00215
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Based on these observations, we believe our kernel estimator of multivariate cdf is a convenient
and reliable tool, which is also superior to the empirical cdf in terms of accuracy.

4.2. GDP growth and unemployment

In this subsection, we discuss in detail the dependence of the US GDP quarterly growth rate on the
unemployment rate. There are three types of unemployment: frictional, structural and cyclical.
Economists regard frictional and structural unemployment as essentially unavoidable in a dynamic
economy; so full employment is something less than 100% employment. The full employment
rate of unemployment is also referred to as the natural rate of unemployment. It does not mean
that the economy will always operate at the natural rate. The economy sometimes operates at
an unemployment rate higher than the natural rate due to cyclical unemployment. In contrast,
the economy may on some occasions achieve an unemployment rate below the natural rate.

Figure 1. (a) ACF plot of gross domestic product (GDP) quarterly growth rate; (b) ACF plot of unemployment quarterly
growth rate; (c) time plot of GDP quarterly growth rate; (d) time plot of unemployment quarterly growth rate. In all ACF
plots, the horizontal lines are at 0 and at ±1.96n−1/2, the 95% confidence limits.
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For example, during World War II, when the natural rate was about 4%, actual rate fell below 2%
during 1943–1945. The pressure of wartime production resulted in an almost unlimited demand
for labour. The natural rate is not forever fixed. It was about 4% in the 1960s, and economists
generally agreed that the natural rate was about 6%. Today, the consensus is that the rate is
about 5.5%.

GDP gap denotes the amount by which actual GDP falls short of the theoretical GDP under the
natural rate. Okun’s law, based on recent estimates, indicates that for every 1% by which the actual
unemployment rate exceeds the natural rate, a GDP gap of about 2% occurs. See Samuelson [11,
p. 559] or McConnell and Brue [12, p. 214] for more details. In other words, if unemployment
rate falls, then GDP growth rate increases. But unemployment rate cannot keep falling because
it moves around the natural rate. So it is useful to find the relationship between the GDP growth
rate and unemployment growth rate.

Let Xt1 be the seasonally adjusted quarterly unemployment growth rate in quarter t , Xt2 be the
quarterly GDP growth rate in quarter t , all data taken from the first quarter of 1948 (t = 1) to the
second quarter of 2006 (t = 234). Since all data has been seasonally adjusted, it is reasonable to
treat Xt = (Xt1, Xt2)

T, t = 1, . . . , 234 as a strictly stationary time series, which is shown in the
time plots. The ACF plots indicate that the autocorrelation function does not deviate significantly
from geometric decay, which is a consequence of the geometric α-mixing Assumption (A2). The
plots are shown in Figure 1.

Given any interval I = [a, b], the survival function of Xt2 conditional on Xt1 ∈ I is defined as

SI (x2) = P(Xt2 > x2|Xt1 ∈ I ) = 1 − F(b, x2) − F(a, x2)

F (b, +∞) − F(a, +∞)
(4)

in which F is the joint distribution function of Xt1 and Xt2.

Figure 2. Survival curves of gross domestic product growth rate conditional on unemployment growth rate:
Xt1 ∈ [−0.08, −0.04], thin solid; Xt1 ∈ [−0.02, 0.02], thick solid; Xt1 ∈ [0.04, 0.08], dotted.
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The function SI (x2) can be approximated by the following plug-in estimator

ŜI (x2) = 1 − F̂ (b, x2) − F̂ (a, x2)

F̂ (b, +∞) − F̂ (a, +∞)
(5)

in which F̂ is the kernel estimator of F defined in Equation (1). According to Theorems 1 and 3,
for any fixed x2, |ŜI (x2) − SI (x2)| = Op(n−1/2) while

sup
x2∈R

|ŜI (x2) − SI (x2)| = Oa.s.(n
−1/2 log n),

so the estimator ŜI (x2) is theoretically very reliable. We therefore draw probabilistic conclusions
based on the smooth estimate ŜI (x2) instead of the true SI (x2).

In Figure 2, the estimated conditional survival curve ŜI (x2) is plotted for intervals I =
[−0.08, −0.04], I = [−0.02, 0.02] and I = [0.04, 0.08]. Clearly, when the unemployment

Figure 3. (a) ACF plot of gold price return; (b) ACF plot of silver price return; (c) time plot of gold price return; (d) time
plot of silver price return. In all ACF plots, the horizontal lines are at 0 and at ±1.96n−1/2, the 95% confidence limits.
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growth rate is between −0.08 and −0.04, the chance to have the GDP growth rate higher than
1.5% is the greatest, which is about 0.2. This is in accordance with the Okun’s law that the growth
in GDP is associated with the unemployment rate. So if policy-makers want to achieve a high
GDP growth rate, they should find better ways to lower the unemployment rate. One can even
estimate the probabilities of GDP growth rates given the policy of unemployment, which is the
interval I . If current unemployment rate is close to the natural rate, then the I is an interval close
to 0, such as [−0.02, 0.02]; if the current unemployment rate is much higher than the natural rate,
then the I is a negative interval, i.e. trying to lower the unemployment rate.

On the other hand, the survival function of Xt1 conditional on Xt2 can be computed similarly.
If a certain level of GDP growth rate is planned to be achieved, one can estimate the conditional
probabilities of different unemployment growth rates.

4.3. Gold and silver price returns

In this subsection, we discuss in detail the dependence of price returns of gold on silver. Let Xt1

be the monthly silver price return in quarter t , Xt2 be the monthly gold price return in quarter
t , all data taken from the February of 1996 (t = 1) to the August of 2006 (t = 127). Since both
data have been seasonally adjusted, it is reasonable to treat Xt = (Xt1, Xt2)

T, t = 1, . . . , 127 as
a strictly stationary time series, which is shown in the time plots. Again, the ACF plots indicate
that the autocorrelation function does not deviate significantly from geometric decay, which is a
consequence of the geometric α-mixing Assumption (A2). The plots are shown in Figure 3.

Figure 4. Survival curves of gold price return conditional on silver price return: Xt1 ∈ [−0.10, −0.06], thin solid;
Xt1 ∈ [−0.02, 0.02], thick solid; Xt1 ∈ [0.06, 0.10], dotted.
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Similar to the previous example, for any fixed interval I = [a, b], the survival function SI (x2)

and its estimate ŜI (x2) are defined as in Equations (4) and (5), respectively. We again base our
inference on the estimated function ŜI (x2).

In Figure 4, the estimated conditional survival curve ŜI (x2) is plotted for intervals I =
[−0.10, −0.06], I = [−0.02, 0.02], I = [0.06, 0.10]. Clearly, when the silver price return is
higher, the gold price increases faster. This is in accordance with the economic theory of substi-
tute goods, i.e. increase in the price of one good causes increases of demand of other substitutes,
hence the increases of the prices of substitutes. So gold and silver clearly substitute each other.
See Samuelson [11, p. 81] for more details.

On the other hand, the survival function of Xt1 conditional on Xt2 can be computed similarly.
That is the conditional probability of silver price return based on gold price return.
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Appendix

A1. Preliminaries

In this appendix, we denote by C (or c) any positive constants, by U (or u) sequences of random variables that are
uniformly O (or o) of certain order and by Oa.s. almost surely O, etc.

LEMMA A1 (Berry–Esseen inequality, [13, Theorem 1]) Let {ξi}ni=1 be an α-mixing sequence with Eξn = 0.
Denote dδ := max1≤i≤n{E|ξi |2+δ}, 0 < δ ≤ 1, Sn = ∑n

i=1 ξi , σ 2
n := ES2

n ≥ c0n for some c0 ∈ (0, +∞). If α(n) ≤
K0 exp(−λ0n), λ0 > 0, K0 > 0, then there exist c1 = c1(K0, δ), c2 = c2(K0, δ), such that

�n = sup
z

|P {σ−1
n Sn < z} − �(z)| ≤ c1

dδ

c0σ δ
n

{
log

(
σn

c
1/2
0

)
/λ

}1+δ

(A1)

for any λ with λ1 ≤ λ ≤ λ2, where

λ1 = c2
{log(σn/c

1/2
0 )}b

n
,

b > 2(1 + δ)

δ
λ2 = 4(2 + δ)δ−1 log

(
σn

c
1/2
0

)
.
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LEMMA A2 (Bernstein’s inequality, [7, Theorem 1.4]) Let {ξt } be a zero mean real-valued process, Sn = ∑n
i=1 ξi .

Suppose that there exists c > 0 such that for i = 1, . . . , n, k ≥ 3,E|ξi |k ≤ ck−2k!Eξ2
i < +∞, mr = max1≤i≤N ‖ξi‖r ,

r ≥ 2. Then for each n > 1, integer q ∈ [1, n/2], each ε > 0 and k ≥ 3

P

{∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣ > nεn

}
≤ a1 exp

(
− qε2

n

25m2
2 + 5cεn

)
+ a2(k)α

([
n

q + 1

])2k/(2k+1)

where

a1 = 2
n

q
+ 2

(
1 + ε2

n

25m2
2 + 5cεn

)
, a2(k) = 11n

(
1 + 5m

2k/(2k+1)

k

εn

)
.

A2. Proofs of Theorems 1 and 2

LEMMA A3 Under Assumptions (A1), (A3) and (A4), as n → ∞

E{F̂ (x)} = F(x) + μp+1(K)

(p + 1)!
d∑

α=1

hp+1
α

∂p+1F(x)

∂x
p+1
α

+ u(hp+1
max ).

Proof Using the integral form of Taylor expansion and denoting hv = (h1v1, . . . , hdvd )T, we write

f (u + hv) ≡ f (u) +
p∑

r=1

1

r!

(
d∑

α=1

hαvα

∂

∂uα

)r

f (u) + Rp+1,

Rp+1 = Rp+1(u, hv) =
∫ 1

0

⎧⎨⎩ tp

p!

(
d∑

α=1

hαvα

∂

∂uα

)p+1

f (u + thv)

⎫⎬⎭ dt.

Hence Assumptions (A4), (A1) and (A3) sequentially imply that

E{F̂ (x)} = E

∫ x

−∞
Kh(Xi − u)du =

∫ x

−∞
du

∫
[−1,1]d

f (u + hv)K(v)dv

=
∫ x

−∞
f (u)du +

∫ x

−∞
du

∫
[−1,1]d

⎡⎣ p∑
r=1

1

r!

(
d∑

α=1

hαvα

∂

∂uα

)r

f (u) + Rp+1

⎤⎦K(v)dv

= F(9x) +
∫ x

−∞
du

∫
[−1,1]d

⎡⎣∫ 1

0

⎧⎨⎩ tp

p!

(
d∑

α=1

hαvα

∂

∂uα

)p+1

f (u + thv)

⎫⎬⎭ dt

⎤⎦K(v)dv

= F(x) + μp+1(K)

(p + 1)!
∫ x

−∞

d∑
α=1

hp+1
α

∂p+1f

∂u
p+1
α

(u)du + u(hp+1
max )

= F(x) + μp+1(K)

(p + 1)!
d∑

α=1

hp+1
α

∂p+1F(x)

∂x
p+1
α

+ u(hp+1
max ). �

LEMMA A4 Under Assumptions (A1)–(A4), as n → ∞

E

{∫ x

−∞
Kh(Xi − u)du

∫ x

−∞
Kh(Xj − u)du

}
=

⎧⎪⎨⎪⎩
F(x) − D(K)

∑d
α=1 hα

∂F (x)

∂xα

+ u(hmax) i = j,

EI {Xi ≤ x}I {Xj ≤ x} + u(hmax) i 
= j.
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Proof We begin with the case of i = j ,

E

{∫ x

−∞
Kh(Xi − u)du

}2

=
∫ ∞

−∞
f (v)K̃

(
x − v

h

)2

dv =
∫ ∞

−1
f (x − hw)K̃2(w)hproddw

= hprod

∫ ∞

−1
{I (w ≥ −1) − I (w ≥ 1)}f (x − hw)K̃2(w)dw +

∫ ∞

1
f (x − hw)hproddw

= hprod

∫ ∞

−1
{I (w ≥ −1) − I (w ≥ 1)}f (x − hw)K̃2(w)dw + F(x − h)

=
d∑

α=1

hprod

∫ ∞

1
dw_α

∫ 1

−1
dwαf (x − hw)K̃2(wα) + F(x) −

d∑
α=1

∂F (x)

∂xα

hα + u(hmax)

= F(x) −
d∑

α=1

hα

∂F (x)

∂xα

D(K) + u(hmax).

Similarly, for the case of i 
= j , one obtains

E

{∫ x

−∞
Kh(Xi − u)du

∫ x

−∞
Kh(Xj − u)du

}

=
∫ ∞

−∞

∫ ∞

−∞
dvidvj fi,j (vi , vj )K̃

(
x − vi

h

)
K̃

(
x − vj

h

)

=
∫ ∞

−1

∫ ∞

−1
fi,j (x − hwi , x − hwj )K̃(wi )K̃(wJ )h2

proddwidwj

= h2
prod

{∫ ∞

−1
{I (wi ≥ −1) − I (wi ≥ 1)}K̃(wi )dwi +

∫ ∞

1
dwi

}

×
{∫ ∞

−1

{
I (wj ≥−1) − I (wj ≥ 1)

}
K̃(wj )dwj +

∫ ∞

1
dwj

}
fi,j (x − hwi , x − hwj )

= h2
prod

∫ ∞

−1
{I (wi ≥ −1) − I (wi ≥ 1)}K̃(wi )dwi

∫ ∞

1
dwj fi,j (x − hwi , x − hwj )

+ h2
prod

∫ ∞

−1
{I (wj ≥ −1) − I (wj ≥ 1)}K̃(wj )dwj

∫ ∞

1
dwifi,j (x − hwi , x − hwj )

+ EI {Xi ≤ x − h}I {Xj ≤ x − h} + u(hmax)

=
d∑

α=1

hα

∫ ∞

h
dvj

∫ ∞

hi_α

dvi_α

∫ 1

−1
K̃(wiα)dwiαfi,j (xα − hwiα, x_α − vi_α, x − vj )

+
d∑

α=1

hα

∫ ∞

h
dvi

∫ ∞

hj_α

dvj_α

∫ 1

−1
K̃(wjα)dwjαfi,j (x − vi , xα − hwjα, x_α − vj_α)

+ EI {Xi ≤ x}I {Xj ≤ x} −
d∑

α=1

hα

∂EI {Xi ≤ x}I {Xj ≤ x}
∂xα

+ u(hmax)

= EI {Xi ≤ x}I {Xj ≤ x} −
d∑

α=1

hα

∂EI {Xi ≤ x}I {Xj ≤ x}
∂xα

+
d∑

α=1

hα

∂EI {Xi ≤ x}I {Xj ≤ x}
∂xα

+ u(hmax) = EI {Xi ≤ x}I {Xj ≤ x} + u(hmax). �

Denote Sn = Sn(x) = n{F̂ (x) − EF̂ (x)} = ∑n
i=1 ξin in which

ξi,n = ξi,n(x) =
∫ x

−∞
Kh(Xi − u)du − E

{∫ x

−∞
Kh(Xi − u)du

}
,
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then clearly Eξi,n = 0. Denote by γ̃ (l) = cov(ξi,n, ξi+l,n) the autocovariance function, then we have the following
corollary.

COROLLARY A1 Under Assumptions (A1)–(A4), as n → ∞

cov(ξi,n, ξj,n) = γ̃ (i − j) =

⎧⎪⎨⎪⎩
F(x) − F 2(x) − D(K)

∑d
α=1 hα

∂F (x)

∂xα

+ u(hmax) i = j,

EI {Xi ≤ x}I {Xj ≤ x} − F 2(x) + u(hmax) i 
= j.

Proof According to Lemmas A3 and A4,

cov(ξi,n, ξj,n) =
[
E

{∫ x

−∞
Kh(Xi − u)du

∫ x

−∞
Kh(Xj − u)du

}
−
(

E

∫ x

−∞
Kh(Xi − u)du

)2
]

=
{

F(x) − D(K)
∑d

α=1 hα
∂F(x)
∂xα

+ u(hmax) i = j

EI {Xi ≤ x}I {Xj ≤ x} + u(hmax) i 
= j

−
[
F(x)+μp+1(K)

(p + 1)!
d∑

α=1

hp+1
α

∂p+1F(x)

∂x
p+1
α

+ u(hp+1
max )

]2

,

the rest of the proof is trivial. �

Proof of Theorems 1 and 2 According to Corollary A1

γ̃ (l) =

⎧⎪⎨⎪⎩
γ (0) − D(K)

∑d
α=1 hα

∂F (x)

∂xα

+ u(hmax) l = 0,

γ (l) + u(hmax) l 
= 0,

(A2)

in which γ (l) = γ (l, x) = EI {X1 ≤ x}I {X1+l ≤ x} − F 2(x). Lemma A3 and Assumption (A3) further imply that

Sn = n

{
F̂ (x) − F(x) − μp+1(K)

(p + 1)!
d∑

α=1

hp+1
α

∂p+1F(x)

∂x
p+1
α

+ u(hp+1
max )

}
. (A3)

Meanwhile, σ 2
n = ES2

n = var(Sn) = nAn + nBn, where An = ∑
|l|≤c log n(1 − |l|/n)γ̃ (l) and Bn = ∑

c log n<|l|<n(1 −
|l|/n)γ̃ (l). Because |γ (l)| is

|P({ω : X1(ω) ≤ x} ∩ {ω : X1+h(ω) ≤ x}) − P({ω : X1(ω) ≤ x})P ({ω : X1+h(ω) ≤ x})|
which is bounded by α(l) ≤ K0e

−λ0 l . Then,
∑∞

l=−∞ |γ (l)| ≤ γ (0) + 2
∑∞

l=1 K0 exp(−λ0l) < ∞ and Equation (A2)
implies that

An =
∑

|l|≤c log n

(
1 − |l|

n

)
γ (l) +

∑
|l|≤c log n

(
1 − |l|

n

)
U(hmax) →

∞∑
l=−∞

γ (l) ≥ c0.

Next, |cov(ξ1,n, ξ(1+l),n)| ≤ 4‖ξ1,n‖∞‖ξ(1+l),n‖∞ α(h) ≤ 4K0 exp(−λ0l) gives

|Bn| =
∑

c log n<|l|<n

(
1 − |l|

n

)
|γ̃ (l)| ≤

∑
|l|>c log n

(
1 − |l|

n

)
4K0K0 exp(−λ0l).

For c ≥ 2/λ0, |Bn| ≤ 4K0e
−λ0c log n/1 − e−λ0 = K0n

−cλ0 /1 − e−λ0 ≤ C1n
−2. Forn large enough,σ 2

n /n = An + Bn →∑∞
l=−∞ γ (l) ≥ c0, therefore

∑
|l|≤n γ (l) > 0. Then by Equation (A1) in Lemma A1,

�n = sup
z

|P {σ−1
n Sn < z} − �(z)| ≤ c1

d

c0σ δ
n

{
log(σn/c

1/2
0 )

λ

}1+δ

.

Let δ = 1, λ = 4(2 + δ)δ−1 log
(
σn/c

1/2
0

) = 12 log(σn/c
1/2
0 ), d = 1, then �n ≤ (c1)/(c0σn)12−2 = c/σn = O(n−1/2),

i.e. Sn/σn →d N(0, 1). Theorem 1 then follows because
√

n
√

V −1(x)(F̂ (x) − F(x)) →d N(0, 1) by Slutsky’s theorem.
Equations (A2) and (A3) together with Eξi,n = 0 imply that

{EF̂ (x) − F(x)}2 = μ2
p+1(K)

(p + 1)!2
{

d∑
α=1

hp+1
α

∂p+1F(x)

∂x
p+1
α

}2

+ u(h2p+2
max ),

E{F̂ (x) − EF̂ (x)}2 = n−1V (x) − D(K)n−1
d∑

α=1

hα

∂F (x)

∂xα

+ u(n−1hmax),

hence Theorem 2 follows by computing
∫

E{F̂ (x) − EF̂ (x)}2 + {EF̂ (x) − F(x)}2dF(x). �
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A3. Proof of Theorem 3

LEMMA A5 Denote gm1,...,md
= (a1,m1 , . . . , ad,md

) ∈ Rd, 1 ≤ mα ≤ Mα and

An = max
1≤mα ≤Mα

|F̂ (gm1,...,md
) − E{F̂ (gm1,...,md

)}|,

Bn = max
1≤mα ≤Mα

|F̂ (gm1,...,md
) − F(gm1,...,md

)|.

If max(M1, . . . , Md) ≤ Cn, then An + Bn = Oa.s(n
−1/2 log n) while for i.i.d. X1, . . . , Xn, An + Bn = Oa.s.(n

−1/2

(log n)1/2).

Proof Note that F̂ (gm1,...,md
) − EF̂ (gm1,...,md

) = n−1 ∑n
i=1 ζin in which

ζin = ζin,m1,...,md
= ζi,n(gm1,...,md

) =
∫ gm1 ,...,md

−∞
Kh(Xi − u)du − E

{∫ gm1 ,...,md

−∞
Kh(Xi − u)du

}
,

then one has Eζin = 0, while

E(ζ 2
in) = E

(∫ gm1 ,...,md

−∞
Kh(Xi − u)du−E

{∫ gm1 ,...,md

−∞
Kh(Xi − u)du

})2

≤ 1,

and for k ≥ 2, E(|ζin|k) = E(|ζin|k−2ζ 2
in), which is

E

[∣∣∣∣∫ gm1 ,...,md

−∞
Kh(Xi − u)du−E

{∫ gm1 ,...,md

−∞
Kh(Xi − u)du

}∣∣∣∣k−2

ζ 2
in

]
≤ 1k−2E(ζ 2

in).

By Lemma A2 with k = 3, a2(3) = 11n(1 + 5m
6/7
3 /εn), m

2
2 = E(ζ 2

in) ≤ 1, εn = a log n/
√

n,

P

{∣∣∣∣∣
n∑

i=1

ζin

∣∣∣∣∣ > nεn

}
≤ a1 exp

(
− qε2

n

25m2
2 + 5cεn

)
+ a2(3)α

([
n

(q + 1)

])6/7

.

Take q such that [n/(q + 1)] ≥ c0 log n, q ≥ (c1n)/(log n), then qε2
n/(25m2

2 + 5cεn) ≥ c2a
2 log n and

a1 = 2
n

q
+ 2

(
1 + ε2

n

25m2
2 + 5cεn

)
= O(log n).

Since m3 = max1≤i≤n ‖ζi‖3 ≤ {E(ζ 3
in)}1/3 ≤ 1, then

a2(3) = 11n

(
1 + 5

εn

)
≤ 11n

{
1 + 5

an−1/2 log n

}
≤ 11n

{
1 + 5

a log n

}
= O(n),

α

([
n

(q + 1)

])6/7

≤
(

K0 exp

(
−λ0

[
n

(q + 1)

]))6/7

≤ Cn−6λ0c0/7.

So for c0, c2 large enough

P

{∣∣∣∣∣
n∑

i=1

ζin

∣∣∣∣∣ > nεn

}
≤ O(log n) exp(−c2a

2 log n) + Cn1−6λ0c0/7 ≤ Cn−(d+2),

P

{
max

1≤mα≤Mα

n−1

∣∣∣∣∣
n∑

i=1

ζin,m1,...,md

∣∣∣∣∣ > an−1/2 log n

}

≤
M1,...,Md∑

m1=1,...,md=1

P

{
n−1

∣∣∣∣∣
n∑

i=1

ζin,m1,...,md

∣∣∣∣∣ > an−1/2 log n

}
≤ Cn−(d+2)

d∏
α=1

Mα ≤ Cn−2.

Hence Borel–Cantelli lemma implies that An = Oa.s.(n
−1/2 log n). Meanwhile Bn is bounded by

max
1≤mα≤Mα

∣∣∣F̂ (gm1,...,md
) − E{F̂ (gm1,...,md

)}
∣∣∣+ max

1≤mα≤Mα

∣∣∣E{F̂ (gm1,...,md
)} − F(gm1,...,md

)

∣∣∣
= An + U(n−1/2) = Oa.s.(n

−1/2 log n).

If X1, . . . , Xn are i.i.d., then An + Bn = Oa.s.(n
−1/2(log n)1/2) by using the same steps as shown with Bernstein’s

inequality of i.i.d. case. �

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Y
a
n
g
,
 
L
i
j
i
a
n
]
 
A
t
:
 
2
3
:
1
5
 
1
0
 
N
o
v
e
m
b
e
r
 
2
0
0
8



676 R. Liu and L. Yang

LEMMA A6 ∀A ⊂ Rd,
∫
A

|Kh(v − u)|du ≤ ∫
Rd |Kh(v − u)|du ≤ ‖K‖d

L1 .

Proof Applying elementary arguments,
∫
A

|Kh(v − u)|du ≤ ∫
Rd |Kh(v − u)|du is bounded by∫

Rd

∣∣∣∣∣
d∏

α=1

h−1
α K

(
vα − uα

hα

)∣∣∣∣∣ du =
d∏

α=1

∫ 1

−1
|K(wα)|dwα ≤ ‖K‖d

L1 . �

LEMMA A7 Let −∞ = aα,1 < · · · < aα,Nα = ∞ be such that max(N1, . . . , Nd) ≤ Cn and P(aα,k ≤ Xα ≤
aα,k+1) ≤ 1/n, ∀1 ≤ k ≤ Nα, ∀1 ≤ α ≤ d. Then E

∫ x
gn1 ,...,nd

|Kh(X − u)|du = u(n−1/2(log n)1/2) in which gn1,...,nd
=

(a1,n1 , . . . , ad,nd
) ∈ Rd .

Proof

E

∫ x

gn1 ,...,nd

|Kh(X − u)|du ≤
∫ ∞

−∞

∫ gn1+1,...,nd +1

gn1 ,...,nd

|Kh(v − u)|du dF(v)

=
∫ gn1+1,...,nd +1+(h1,...,hd )

gn1 ,...,nd
−(h1,...,hd )

dF (v)

∫ gn1+1,...,nd +1

gn1 ,...,nd

|Kh(v − u)|du

≤ C

∫ gn1+1,...,nd +1+(h1,...,hd )

gn1 ,...,nd
−(h1,...,hd )

dF (v)

according to Lemma A6.
∫ gn1+1,...,nd +1+(h1,...,hd )

gn1 ,...,nd
−(h1,...,hd ) dF (v) equals∫ gn1+1,...,nd +1+(h1,...,hd )

gn1 ,...,nd
−(h1,...,hd )

dF (v) −
∫ gn1+1,...,nd +1

gn1 ,...,nd

dF (v) +
∫ gn1+1,...,nd +1

gn1 ,...,nd

dF (v)

=
∫ gn1+1,...,nd +1+(h1,...,hd )

gn1 ,...,nd
−(h1,...,hd )

dF (v) −
∫ gn1+1,...,nd +1

gn1 ,...,nd

dF (v) + P(gn1,...,nd
≤ X ≤ gn1+1,...,nd+1)

≤
(∫ a1,n1

a1,n1 −h1

+
∫ a1,n1+1

a1,n1

+
∫ a1,n1+1+h1

a1,n1+1

)
· · ·

(∫ ad,nd

ad,nd
−h1

+
∫ ad,nd +1

ad,nd

+
∫ ad,nd +1+h1

ad,nd +1

)
dF(v)

−
∫ gn1+1,...,nd +1

gn1 ,...,nd

dF (v) + 1

n
.

Within this sum, the 3d − 2d terms with
∫ a

α,nα+1
aα,nα

are O(n−1), while each of the 2d terms without
∫ a

α,nα+1
aα,nα

is bounded by
hprod maxx∈Rd |f (x)|. Applying Assumptions (A1) and (A3),

E

∫ x

gn1 ,...,nd

|Kh(X − u)|du ≤ Chprod max
x∈Rd

|f (x)| + C(3d − 2d )

n
= u(n−1/2(log n)1/2). �

LEMMA A8 Under the same conditions of Lemma A7, for ∀x = (x1, . . . , xd ) ∈ Rd, n−1 ∑n
i=1 |ζin| = Ua.s.(n

−1/2 log n)

in which

ζin = ζi,n(gn1,...,nd
) =

∫ x

gn1 ,...,nd

{|Kh(Xi − u)|du−E|Kh(X − u)|}du,

while for i.i.d. X1, . . . , Xn, n
−1 ∑n

i=1 |ζin| = Ua.s.(n
−1/2(log n)1/2).

Proof One can show by applying Lemma A2 as in the proof of Lemma A5. �

Proof of Theorem 3 Under the same conditions of Lemma A7, one has

max
1≤nα≤Nα

|F̂ (gn1,...,nd
) − F(gn1,...,nd

)| = Oa.s.(n
−1/2 log n)

by Lemma A5. For ∀x = (x1, . . . , xd ) ∈ Rd , there exist integers n1, . . . , nd such that F(gn1,...,nd
) ≤ F(x) ≤

F(gn1+1,...,nd+1). Hence |F̂ (x) − F̂ (gn1,...,nd
)| is bounded by∣∣∣∣∣ 1

n

n∑
i=1

∫ x

gn1 ,...,nd

Kh(Xi − u)du

∣∣∣∣∣ ≤ 1

n

n∑
i=1

∫ x

gn1 ,...,nd

|Kh(Xi − u)|du

= 1

n

n∑
i=1

∫ x

gn1 ,...,nd

{|Kh(Xi − u)|du−E|Kh(X − u)|}du +
∫ x

gn1 ,...,nd

E|Kh(X − u)|du = Oa.s.(n
−1/2 log n)
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according to Lemmas A7 and A8. Then according to Lemma A5,

|F̂ (x) − F(x)| ≤ |F̂ (x) − F̂ (gn1,...,nd
)| + |F̂ (gn1,...,nd

) − F(gn1,...,nd
)| + |F(gn1,...,nd

) − F(x)|

= Ua.s.(n
−1/2 log n) + Ua.s.(n

−1/2 log n) + U

(
1

n

)
and if X1, . . . , Xn are i.i.d, one can replace log n in this inequality by (log n)1/2. �
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