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Abstract Aplug-in estimator is proposed for a localmeasure of variance explained by
regression, termed correlation curve in Doksum et al. (J Am Stat Assoc 89:571–582,
1994), consisting of a two-step spline–kernel estimator of the conditional variance
function and local quadratic estimator of first derivative of the mean function. The
estimator is oracally efficient in the sense that it is as efficient as an infeasible cor-
relation estimator with the variance function known. As a consequence of the oracle
efficiency, a smooth simultaneous confidence band (SCB) is constructed around the
proposed correlation curve estimator and shown to be asymptotically correct. Simu-
lated examples illustrate the versatility of the proposed oracle SCB which confirms
the asymptotic theory. Application to a 1995 British Family Expenditure Survey data
has found marginally significant evidence for a local version of Engel’s law, i.e., food
budget share and household real income are inversely related (Hamilton in Am Econ
Rev 91:619–630, 2001).
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1 Introduction

Correlation coefficient is used to measure the strength of linear relationship in many
contexts of regression and multivariate analysis, see for instance Stapleton (2009).
For a pair of random variables (X,Y ) that satisfies a homoscedastic linear regression
model

Y = β0 + β1X + σ0ε, (1)

where E (ε |X ) = 0, E
(
ε2 |X ) = 1, the Galton–Pearson correlation coefficient

between X and Y is

ρ = σ1β1
(
σ 2
1 β2

1 + σ 2
0

)1/2 , ρ ∈ [−1, 1] (2)

in which σ 2
1 = var (X).

This classic definition of correlation does not provide useful information about
the relationship between X and Y , however, when there is strong nonlinear or het-
eroscedastic dependence. To be precise, suppose that (X,Y ) satisfy a nonparametric
regression model

Y = μ (X) + σ (X) ε, (3)

with nonparametric conditionalmean functionμ (x) and conditional variance function
σ 2 (x). Doksum et al. (1994) had creatively defined a localized “correlation curve” at
X = x as

ρ (x) ≡ σ1β (x)
{
σ 2
1 β2 (x) + σ 2 (x)

}1/2 , (4)

inwhichβ (x) = μ′ (x) andσ 2 (x) are, respectively, local analogs of slopeβ1 and vari-
ance σ 2

0 in (2), since for smooth functionsμ (·) and σ (·), Y ≈ μ (x)+β (x) (X − x)+
σ (x) ε when X takes value in a small neighborhood of x . If in fact μ (x) ≡ β0 + β1x
and σ 2 (x) ≡ σ 2

0 , then ρ (x) reduces to the Galton–Pearson correlation coefficient in
( 2).

The correlation curve ρ (·)measures the strength of the relationship between Y and
X in heterocorrelatious experiments, in terms of the variance explained by regression
at every covariate value of X . It is scale and location invariant, always between−1 and
1, and equals ±1 when Y is a nonconstant function of X (i.e., σ 2 (x) ≡ 0, β (x) �= 0).

The problem we study concerns a random sample {(Xi ,Yi )}ni=1 independently and
identically distributed as (X,Y ), satisfying (3) as follows

Yi = μ (Xi ) + σ (Xi ) εi , (5)

E (εi |X ) = 0, E
(
ε2i |X

)
= 1,

in which functions μ (·) and σ (·) are defined over a compact interval S = [a, b], and
the distribution of X is supported on S. Since the ρ (x) in (4) is computed from three
quantities β (x) , σ 2 (x) and σ 2

1 , Doksum et al. (1994) proposed a plug-in estimate of
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ρ (·) by utilizing local estimates of β (x) and σ 2 (x) , and standard estimate of σ 2
1

σ̂ 2
1 = (n − 1)−1

∑n

i=1

(
Xi − X̄

)2
. (6)

An asymptotic pointwise confidence interval was also formulated for ρ (x) at any fixed
x based on the plug-in estimate.

What Doksum et al. (1994) did not supply was a working simultaneous confidence
band (SCB) for ρ (x) over a range of x values. SCBs are versatile tools for statistical
inference about global properties of unknown functions, and they play the same role
as confidence intervals for parameters, see Bickel and Rosenblatt (1973), Hall and
Titterington (1988), Härdle (1989), Eubank and Speckman (1993), Xia (1998), and
Claeskens and Van Keilegom (2003) for early statistical literature on SCB. Although
SCBs pose many theoretical challenges, they have wide applications in numerous
areas such as dimension reduction (Gu and Yang 2015; Zheng et al. 2016), functional
data analysis (Ma et al. 2012; Cao et al. 2012; Gu et al. 2014; Song et al. 2014; Zheng
et al. 2014; Cao et al. 2016), sample survey (Wang et al. 2016), time series analysis
(Wu and Zhao 2007; Zhao and Wu 2008; Wang et al. 2014), distribution estimation
(Wang et al. 2013), and variance estimation (Song and Yang 2009; Cai and Yang 2015.

To provide an SCB for ρ (x), we have modified the estimator of Doksum et al.
(1994) in several crucial aspects. First, the derivative β (x) = μ′ (x) is calculated by
local quadratic procedure instead of by the less efficient Gasser and Müller kernel
estimator. While the study of local polynomial regression was as early as Stone (1977,
1980) and Cleveland (1979), it became widely popular in the 1990s, with desirable
properties such as minimax efficiency, automatic boundary correction, and design
adaptivity established in works such as Fan (1993), Ruppert and Wand (1994), and
Fan and Gijbels (1996).

The direct estimator σ̂ 2 (x) = μ̂2 (x)−μ̂2 (x) of σ 2 (x) = E
(
Y 2 |X = x

)−μ2 (x)
is dropped, where μ̂ (x) and μ̂2 (x) are, respectively, kernel estimators (Gasser et al.
1984) for μ (x) and μ2 (x) ≡ E

(
Y 2 |X = x

)
. Two serious reasons have motivated

this second innovation: this simple plug-in estimator can be negative, while the true
variance is positive, and its bias ismuch larger than that of a two-step variance estimator
inFan andYao (1998).Wehave replaced σ̂ 2 (x)by the spline–kernel variance estimator
σ̂ 2
SK (x), which is as efficient as an infeasible estimator σ̃ 2

K (x), seeCai andYang (2015)
for details.

This paper is organized as follows. Section 2 defines the local quadratic estimator
of the correlation curves and establishes its oracle property with asymptotic SCB.
Section 3 provides concrete steps to implement the SCB. Sections 4 and 5 illustrate
the usefulness of the proposed SCB via simulation study and application to a well-
known cross-sectional data from the British Family Expenditure Survey. Section 6
concludes, while all technical proofs are in “Appendix.”

2 Main result

The population derivative β (x) is approximated by the local quadratic estimator β̂ (x)
which solves a kernel-weighted least-squares problem. The kernel weights Kh1(Xi −
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x), i = 1, . . . , n weed out observations (Xi ,Yi ) from the sum of squares if |Xi − x | >

h1, in which Kh1 (·) = K (·/h1)/h1, K (·) a symmetric function supported on [−1, 1],
h1 = h1,n > 0 a sequence of smoothing parameters called bandwidth. More precisely,
according to Fan and Gijbels (1996), β̂(x) = ĉ1, in which

(
ĉ0, ĉ1, ĉ2

) = argmin
(c0,c1,c2)∈R3

∑n

i=1

{
Yi −

∑2

α=0
cα(Xi − x)α

}2

Kh1(Xi − x).

Alternatively, one writes in matrix form

β̂ (x) = eT1 (XTWX)−1XTWY, (7)

eTk = (δ0k, δ1k, δ2k), with δkk′ = 1 if k = k′, 0 otherwise, (8)

in which

XT = X (x) =
⎛

⎝
1 , . . . , 1

X1 − x , . . . , Xn − x
(X1 − x)2 , . . . , (Xn − x)2

⎞

⎠ , (9)

W = W (x) = n−1diag
{
Kh1 (Xi − x)

}n
i=1 . (10)

As mentioned in Sect. 1, we have adopted the two-step estimator of Cai and Yang
(2015) for σ 2(x). The idea is as follows. If themean functionμ(·)were known a priori,
one could compute Zi = {Yi − μ (Xi )}2 , 1 ≤ i ≤ n and obtain a pseudo-data set
{(Xi , Zi )}ni=1, which satisfies E (Zi |X = x ) = σ 2 (x); hence, an “infeasible kernel
estimator” of the variance function is

σ̃ 2
K (x) =

∑n
i=1 Kh2 (Xi − x) Zi∑n
i=1 Kh2 (Xi − x)

, (11)

where h2 = h2,n is the bandwidth, and Kh2 (·) = K (·/h2) /h2. A spline–kernel
estimator σ̂SK (x) of σ 2 (x) is

σ̂ 2
SK (x) =

∑n
i=1 Kh2 (Xi − x) Ẑi∑n
i=1 Kh2 (Xi − x)

(12)

where Ẑi = {
Yi − μ̂p (Xi )

}2 are the residual squares of spline estimator μ̂p (·),
defined in (13). Cai and Yang (2015) proved that σ̂ 2

SK (x) not only resembles σ̃ 2
K (x)

in form, but also is asymptotically equivalent, uniformly for x ∈ [a + h2, b − h2].
To introduce the spline estimator μ̂p (·), the interval [a, b] is divided into (N + 1)

subintervals J j = [t j , t j+1), j = 0, . . . , N−1, JN = [tN , 1] by a sequence of equally

spaced points
{
t j
}N
j=1, called interior knots, given as

t0 = a < t1 < · · · < b = tN+1, t j = j H, j = 0, 1, . . . , N ,
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in which H = (b − a)/(N + 1) is the distance between neighboring knots. For an
integer p > 0, the spline estimator μ̂p (·) is

μ̂p (·) = argmin
g∈G(p−2)

N

∑n

i=1
{Yi − g (Xi )}2 , (13)

in which the space of p-th order splines on interval [a, b], G(p−2)
N = G(p−2)

N [a, b],
is defined as the space of functions that are polynomials degree (p − 1) on each
J j , j = 0, 1, . . . , N and have continuous (p − 2)-th derivative on [a, b]. This space

G(p−2)
N has dimension N + p with B spline basis

{
b j,p (·)}Nj=1−p defined in de Boor

(2001), p.87, i.e., G(p−2)
N =

{∑N
j=1−p λ j b j,p (·) ∣∣λ j ∈ R, 1 − p ≤ j ≤ N

}
.

If one makes use of (6), (7), and (12), the local quadratic correlation curve (LQCC)
is a plug-in estimate of ρ (x) in (4)

ρ̂LQ(x) = σ̂1β̂ (x)
{
σ̂ 2
1 β̂2 (x) + σ̂ 2

SK(x)
}1/2 , x ∈ [a, b] . (14)

For benchmarking, one denotes

ρ̃LQ(x) = σ1β̂ (x)
{
σ 2
1 β̂2 (x) + σ 2(x)

}1/2 , x ∈ [a, b] (15)

as an intermediate infeasible estimator of ρ(x).
To formulate the necessary technical assumptions, for sequences of real numbers

cn and dn , one writes cn � dn to mean cn/dn → 0, as n → ∞, and cn ∼ dn to mean
for any n, |cn/dn| + |dn/cn| ≤ M < ∞.

(A1) The function μ (·) ∈ C (3) [a, b].
(A2) The joint distribution of (X, ε) is bivariate continuous with E (ε |X ) = 0,

E
(
ε2 |X ) = 1, and there exists a η2 > 1/2 such that

supx∈[a,b] E
(
|ε|4+2η2 |X = x

)
= Mη2 ∈ (0,+∞)

and consequently for a η1 > 1/3,

supx∈[a,b] E
(
|ε|2+η1 |X = x

)
= Mη1 ∈ (0,+∞)

as well.
(A3) The density function of predictor X, f (·) ∈ C (1) [a, b], the variance function

σ 2 (·) ∈ C (2) [a, b], f (x) ∈ [
c f ,C f

]
, σ (x) ∈ [cσ ,Cσ ] ,∀x ∈ [a, b], for

constants 0 < c f < C f < +∞, 0 < cσ < Cσ < +∞.
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(A4) The kernel function K (·) ∈ C (2) (R) is a symmetric probability density function
supported on [−1, 1].

(A5) The bandwidth h1 satisfies n2α1−1 log4 n � h1 � n−1/7 log−1/7 n, for some α1
such that α1 ∈ (2/5, 3/7), α1 (2 + η1) > 1, α1 (1 + η1) > 2/7. In particular,
one may take h1 ∼ n−1/7 (log n)−1/7−δ1 for any δ1 > 0.

(A6) The bandwidth h2 satisfies n2α2−1 log n � h2 � n−1/5 log−1/5 n, for some
α2 ∈ (2/7, 2/5) such that, α2 (2 + η2) > 1, α2 (1 + η2) > 2/5. In particular,
one may take h2 ∼ n−1/5 (log n)−1/5−δ2 for any δ2 > 0.

(A7) The number of interior knots N = Nn satisfies

max

{(
nh−2

2

)1/8
,
log1/2 n

h1/22

}

� N � min

{

n1/2h2,

(
nh2
log n

)1/3

,
(
nh−1

2

)1/5
}

.

Assumptions (A1)–(A3) are adopted from Song and Yang (2009), Assumption (A4)
is standard for kernel regression, and Assumption (A5) is a general condition on
bandwidth of h1 leading to the asymptotic Gumbel distribution for ρ̃LQ(·). Assump-
tions (A6) and (A7) are general conditions adopted from Cai and Yang (2015) on
the choice of bandwidth h2 for (12) and number of knots N to guarantee oracle
efficiency between ρ̂LQ(·) and ρ̃LQ(·). It is worth noting that Assumptions (A5)–
(A6) imply that h2 � n−1/5 log−1/5 n � n2α1−1 log4 n � h1 as α1 > 2/5, while
h−1/2
2 � (

n2α2−1 log n
)−1/2 = n1/2−α2 log−1/2 n � n3/14 log−11/14 n as α2 > 2/7,

and n3/14 log−11/14 n � h−3/2
1 log−1 n because h1 � n−1/7 log−1/7 n. In summary,

the following asymptotic relations hold between h1 and h2, as n → ∞

h2 � h1, h
−1/2
2 � h−3/2

1 log−1 n, (16)

and in particular, for large enough n,

In = [a + h1, b − h1] ⊂ [a + h2, b − h2] , (17)

where In , the interval over which all SCBs are constructed, grows with n to (a, b).
Data-driven implementation of h1, h2 and N that satisfies all the requirements in
Assumptions (A5)–(A7), respectively, is given in Sect. 3, aided by explicit formula
(26) and Eq. (15) in Cai and Yang (2015) for rule-of-thumb bandwidths.

An SCB based on infeasible estimator ρ̃LQ(x) is constructed by the delta method,
similar to Carroll and Ruppert (1988). Undersmoothing is performed as in Hall (1991,
1992), Claeskens and Van Keilegom (2003) to handle the nonparametric regression
bias in β̂ (x), more efficiently than explicit bias correction.

Following Aerts and Claeskens (1997), an asymptotic standard deviation of ρ̃LQ(x)
is obtained, namely

Vn (x) = σ1

{
1 − ρ2 (x)

}3/2 {
n−1h−3

1 f −1 (x)CK ∗
}1/2

, (18)
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where one denotes

CK ∗ =
∫

K ∗ (u)2 du,CK ∗′ =
∫

K ∗′ (u)2 du,C
(
K ∗) = C1/2

K ∗′/C
1/2
K ∗ , (19)

in which K ∗ is the equivalent kernel of order 3,

K ∗(u) =
(∑2

λ=0
s1λu

λ

)
K (u), (sλδ)

2
λ,δ=0 × (μλ+δ(K ))2λ,δ=0 = I3, (20)

and the moments of K , μ j (K ) = ∫
v j K (v) dv, see Fan and Gijbels (1996) and

Gasser et al. (1984) for details. Denote also

ah1 =
√

2 log
{
h−1
1 (b − a)

}
, bh1 = ah1 + a−1

h1

{√
C (K ∗)/2π

}
. (21)

The next proposition follows from standard SCB theory.

Proposition 1 Under Assumptions (A1)–(A5), as n → ∞,

P

[

ah1

{

sup
x∈In

∣∣ρ̃LQ(x) − ρ (x)
∣∣ /Vn (x) − bh1

}

≤ z

]

→ e−2e−z
, z ∈ R. (22)

Equation (22) yields an infeasible 100 (1 − α)% SCB for ρ (x) over In

ρ̃LQ(x) ± Vn (x)
[
2 log

{
h−1
1 (b − a)

}]1/2
Qn (α) , (23)

where

Qn (α) = 1 + log {C (K ∗) /2π} − log {−1/2 log (1 − α)}
2 log

{
h−1
1 (b − a)

} . (24)

As pointed out by one reviewer, alternative estimators for β (x) such as B spline
estimator are also feasible, we have chosen the local quadratic approach for the ease
of deriving maximal deviation result (22) in Proposition 1, and the SCB in (23).
The adjective “infeasible” highlights the fact that ρ̃LQ(x) contains unknown variance
function σ 2 (x); thus, it is not a proper statistic.

Theorem 1 Under Assumptions (A1)–(A7), as n → ∞,

sup
x∈In

∣∣ρ̃LQ(x) − ρ̂LQ(x)
∣∣ = Op

(
n−1/2h−1/2

2 log1/2 n
)

= op
(
n−1/2h−3/2

1 log−1/2 n
)

,

and consequently, since ah1 ∼ log1/2 n, V−1
n (x) = Up

(
n1/2h3/21

)
,

ah1 sup
x∈In

∣
∣ρ̃LQ(x) − ρ̂LQ(x)

∣
∣ /Vn (x) = op (1) , (25)
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i.e., the estimator ρ̂LQ(x) is asymptotically as efficient as “the infeasible estimator”

ρ̃LQ(x), up to uniform order n−1/2h−3/2
1 log−1/2 n over In.

Proof of Theorem 1 in “Appendix” depends in part on the uniform bound

supx∈[a+h2,b−h2]

∣∣σ̂ 2
SK(x) − σ 2 (x)

∣∣ being of order Op

(
n−1/2h−1/2

2 log1/2 n
)
, which

is the reason spline instead of kernel smoothing is used for step one of variance function
estimation, both in Cai and Yang (2015) and this work. Regardless linear or higher-
order spline is used in step one, the squares of residuals will undergo kernel smoothing
in step two; hence, the spline–kernel estimator σ̂ 2

SK(x) is always smooth.
Putting together Theorem 1 and Proposition 1, one obtains the main result.

Theorem 2 Under Assumptions (A1)–(A7), an asymptotic 100(1 − α)% oracle SCB
for ρ (x) over In is

ρ̂LQ(x) ± ah1Vn (x) Qn (α) ,

with Vn (x) in (18) and Qn (α) in (24). In other words,

lim
n→∞ P

{
ρ (x) ∈ ρ̂LQ(x) ± ah1Vn (x) Qn (α) , x ∈ In

} = 1 − α.

The infeasible SCB in Proposition 1 and the oracle SCB in Theorem 2 both shrink
to zero at the rate of n−1/2h−3/2

1 log1/2 n, which is n−2/7 log1.34 n for the implemented
bandwidth ĥ1 ∼ n−1/7 log−0.56 n in Sect. 3. This rate is slightly slower than the mean
square optimal convergence rate for estimating derivative β (·), which is n−2/7. The
proofs of Proposition 1, and Theorems 1 and 2 are based on Lemmas 1–8, all of which
are in “Appendix.”

3 Implementation

To choose an appropriate plug-in bandwidth h1 = h1,n for computation β̂ (x), one
makes use of the following rule-of-thumb (ROT) bandwidth of Fan andGijbels (1996),

h1,rot =

⎧
⎪⎨

⎪⎩

8505/11
∑n

i=1

(
Yi − ∑5

k=0 âk X
k
i

)2

n
∑n

i=1

(
6̂a3 + 24̂a4Xi + 60̂a5X2

i

)2

⎫
⎪⎬

⎪⎭

1/7

, (26)

in which {̂ak}5k=0 = argmin{ak }5k=0∈R6

∑n
i=1

(
Yi − ∑5

k=0 ak X
k
i

)2
. One then sets ĥ1 =

ĥ1,n = h1,rot log−0.56 n ∼ n−1/7 log−0.56 n, which clearly satisfies Assumption (A5),
especially the undersmoothing condition h1 � n−1/7 log−1/7 n.

For constructing SCB, the unknown function f (x) is evaluated and then plugged in,
the same approach taken in Hall and Titterington (1988), Härdle (1989), Xia (1998),
Wang and Yang (2009), Song and Yang (2009). Without loss of generality, let the
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kernel K (u) = 15
(
1 − u2

)2
I {|u| ≤ 1} /16 be the quartic kernel in (20) and

f̂ (x) = n−1
∑n

i=1
h−1
1,rot,fK

(
Xi − x

h1,rot,f

)
,

h1,rot,f = (4π)1/10
(
140

3

)
n−1/5σ̂1,

where h1,rot,f is the rule-of-thumb bandwidth in Silverman (1986).
To satisfy Assumption (A4), the kernel K is chosen to be the quartic kernel. To

satisfy Assumption (A6), the bandwidth ĥ2 = ĥ2,n = h2,rot is used for the computing
of σ̂ 2

SK(x), where the ROT bandwidth h2,rot is from Cai and Yang (2015).
Although splines of any order can be employed, we have used linear splines

(with p = 2). To select the number of interior knots N , let N̂ be the mini-
mizer of Bayesian Information Criterion (BIC) defined below, over integers from
[0.5Nr ,min (5Nr , Tb)], with Nr = n−1/5 and Tb = n/4 − 1. This ensures that N̂ is
order of n−1/5 and the total number of parameters in the spline least-squares regression
is no more than n/4. The chosen N̂ obviously satisfies Assumption (A7), but other
choices of N remain open possibility.

For any candidate integer Nn ∈ [0.5Nr ,min (5Nr , Tb)], denote the predictor for
the i-th response Yi by Ŷi = μ̂2(Xi ). Let qn = (1 + Nn) be the total number of
parameters in (13). The BIC value corresponding to Nn is,

BIC (Nn) = log (MSE) + qn log n/n,MSE = n−1
∑n

i=1

(
Yi − Ŷi

)2
,

and N̂ = argminNn∈[0.5Nr ,min(5Nr ,Tb)] BIC (Nn).
Algebra shows that the least-squares problem in Eq. (13) can be also solved via the

truncated power basis
{
1, x,

(
x − t j

)
+ , j = 1, 2, . . . , N̂

}
, see de Boor (2001), which

is regularly used in implementation. In other words,

μ̂2 (x) = r̂0 + r̂1x +
∑N̂

j=1
r̂ j,2

(
x − t j

)
+ ,

where the coefficients
(
r̂0, r̂1, r̂1,2, . . . , r̂ N̂ ,2

)T
are solutions to the least-squares prob-

lem(
r̂0, . . . , r̂ N̂ ,2

)T = argmin
RN̂+2

∑n
i=1

{
Yi − r0 − r1Xi − ∑N̂

j=1 r j,2
(
Xi − t j

)
+
}2

.

All above together can contribute to the plug-in estimator ρ̂LQ(x). Then the function
Vn (x) is approximated by the following,

V̂n (x) = σ̂1

{
1 − ρ̂2

LQ(x)
}3/2 {

n−1ĥ−3
1 f̂ −1 (x)

∫
K ∗ (v)2 dv

}1/2

. (27)
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Hence, the oracle SCB in Theorem 2 is computed as the following asymptotically
100 (1 − α)% SCB

ρ̂LQ(x) ± V̂n (x)
[
2 log

{
ĥ−1
1 (b − a)

}]1/2
Qn (α) , x ∈

[
a + ĥ1, b − ĥ1

]
. (28)

All computing in the next two sections is carried out according to the above speci-
fications, using the open-access environment R for statistical computing and graphics,
developed by the R Core Team (2013).

4 Simulation

To illustrate the finite-sample behavior of the oracle SCB in (28 ), data sets are gener-
ated from models (1) and (3) with independent X and ε, and X ∼ U (0.8, 1.6) , ε ∼
N (0, 1), with the following mean and variance functions

Case1: μ (x) = 0.8 − 0.14x, σ (x) = 0.09,

Case2: μ (x) = 0.2 sin (4πx) , σ (x) = 3 − x2.
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Fig. 1 Plots of oracle SCB for the correlation curve (dashed) computed according to (28) in Case 1 and
Case 2, the estimator ρ̂LQ(x) (thick), and the true function ρ (x) (thin). a Case 1: n = 1000, 95% SCB; b
Case 1: n = 1000, 99% SCB; c Case 2: n = 1000, 95% SCB; d Case 2: n = 1000, 99% SCB
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Table 1 Coverage frequency of
the oracle SCB in (28) and
infeasible SCB in (23) from
1000 replications

Case n 1 − α Oracle SCB Infeasible SCB

Case 1 500 0.950 0.890 0.901

0.990 0.914 0.927

1000 0.950 0.940 0.948

0.990 0.982 0.979

2000 0.950 0.949 0.952

0.990 0.990 0.992

Case 2 500 0.950 0.875 0.899

0.990 0.906 0.919

1000 0.950 0.939 0.946

0.990 0.981 0.988

2000 0.950 0.950 0.952

0.990 0.989 0.990

Following suggestions of one reviewer, we have set the correlation curve ρ (x) for
Case 1 to be a constant, while for Case 2 with more features such as local minima
and maxima, see the thin curve in each plot of Fig. 1. The sample sizes are taken
to be n = 500, 1000, 2000 and the confidence levels 1 − α = 0.95, 0.99. Table 1
contains the coverage frequency from 1000 replications of sample size n of the true
correlation curve ρ (x), over 401 equally spaced points from 0.8 to 1.6, by the oracle
SCB in (28). Coverage frequency over the same sets of points is also listed in the table
for the infeasible SCB in (23). In all cases, the oracle SCB is close to the infeasible
SCB in terms of coverage frequency, showing positive confirmation of Theorem 1.
The coverage of oracle SCB improves with increasing sample size, approaching the
nominal level for sample size as low as n = 500, which confirms Theorem 2.

For visual impression, Fig. 1 overlays for a representative sample of size 1000,
the 95 and 99% oracle SCBs (dashed) computed according to (28), and the estimator
ρ̂LQ(x) (thick), together with the true correlation curve ρ (x) (thin). One sees clearly
that the oracle SCBs are narrow and accurate around the true curve for all cases.

5 Empirical example

In this section, the oracle SCB of (28) is applied to a cross-sectional random sam-
ple from the 1995 British Family Expenditure Survey, consisting of the food budget
share Y and the logarithm of total expenditure X in 1995 for n = 1655 married cou-
ples from UK with an employed head-of-household between the ages of 25 and 55
years. The data have been studied in Blundell et al. (2007) to identify the economi-
cally meaningful “structural” Engel curve relationship, via the sieve semiparametric
IV approach, see https://github.com/JeffreyRacine/R-Package-np/ for detailed infor-
mation on the British Family Expenditure Survey, and Fig. 2a for a scatter plot of the
data {(Xi ,Yi )}1655i=1 .
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Fig. 2 For the British cross-sectional data, a scatterplot consists of n = 1655 household-level observations
taken from the British Family Expenditure Survey; b linear (solid) and local quadratic (thick) estimators of
the local mean functionμ (x); plots of oracle SCB ( dashed) computed according to (28), the local quadratic
estimator ρ̂LQ(x) ( thick), a constant correlation coefficient (solid) which equals 0, c 95% SCB; d 87.04%
SCB

Sample estimate of the Galton–Pearson correlation ρ between X and Y is ρ̂ =
−0.4793, and the null hypothesis H0 : ρ = 0 is rejected in favor of the alternative
H1 : ρ < 0 with p value 2 × 10−16. This supports the Engel’s Law (Hamilton
2001) of negative association between food budget share and household real income,
see Fig. 2b for linear (solid) and local quadratic (thick) estimators of the local mean
function μ (x), both demonstrating such significant negative association.

Equipped with the advanced new tool of SCB for local correlation, it would be
interesting to examine whether this theory holds locally as well. For this purpose,
the null hypothesis is H0 : ρ (x) ≡ 0 vs the alternative H1 : ρ (x) < 0. Figure 2c,
d overlays the local quadratic estimator ρ̂LQ(x) (thick), the oracle SCBs (dashed)
for the correlation curve, and a constant correlation 0 (solid). Figure 2c shows that
the 100 (1 − 0.05)% oracle SCB is not completely below the horizontal zero line,
while Fig. 2d depicts that the horizontal zero line is exactly above the maximum of
upper dashed line of the 100 (1 − 0.1296)% oracle SCB. One therefore rejects the
hypothesis of zero local correlation in favor of negative local correlation with p value

123



A smooth simultaneous confidence band for correlation curve

1 − 0.8704 = 0.1296. Thus, the local version of Engel’s law holds with much less
significant evidence.

6 Conclusions

A plug-in estimator is proposed for correlation curve to quantify the hetero-
correlaticity in nonparametric regression model, which is shown to be oracally
efficient, that is, it uniformly approximates an infeasible estimator at the rate of

op
(
n−1/2h−3/2

1 log−1/2 n
)
, much faster than the rate at which the infeasible converges

to the true correlation function. A data-driven procedure implements an asymptotically
oracle SCB centered around the local correlation estimator, with limiting converge
probability which equals to that of the infeasible SCB. As illustrated by a cross-
sectional data, the theoretically justified oracle SCB is a useful tool to check the local
correlation between a response variable and a covariate and is expected to find wide
applications in many scientific disciplines.
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Appendix

Throughout this section, for any function g (u), define ‖g‖∞ = supu∈In |g (u)|. For
any vector ξ , one denotes by ‖ξ‖ the Euclidean norm and ‖ξ‖∞ means the largest
absolute value of the elements.We useC to denote any positive constants in the generic
sense. A random sequence {Xn} “bounded in probability” is denoted as Xn = Op (1),
while Xn = op (1) denotes convergence to 0 in probability. A sequence of random
functions which are op or Op uniformly over x ∈ In denoted as u p or Up.

Next, we state the strong approximation Theorem of Tusnády (1977). It will be
used later in the proof of Lemmas 4 and 5.

Let U1, . . . ,Un be i.i.d r.v.’s on the 2-dimensional unit square with P (Ui < t) =
λ (t) , 0 ≤ t ≤ 1, where t = (t1, t2) and 1 = (1, 1) are 2-dimensional vectors, λ (t) =
t1t2. The empirical distribution function Fu

n (t) = n−1 ∑n
i=1 I{Ui<t} for 0 ≤ t ≤ 1.

Lemma 1 The 2-dimensional Brownian bridge B (t) is defined by B (t) = W (t) −
λ (t)W (1) for 0 ≤ t ≤ 1, where W (t) is a 2-dimensional Wiener process. Then there
is a version Bn (t) of B (t) such that

P

[

sup
0≤t≤1

∣∣∣n1/2
{
Fu
n (t) − λ (t)

} − Bn (t)
∣∣∣ > n−1/2 (C log n + x) log n

]

< Ke−λx ,

holds for all x, where C, K , λ are positive constants.
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The Rosenblatt transformation for bivariate continuous (X, ε) is

(
X

∗
, ε∗) = M (X, ε) = (

FX (x) , Fε|X (ε |x )
)
, (29)

then (X∗, ε∗) has uniform distribution on [a, b]2; therefore,

Zn

{
M−1 (x∗, ε∗)} = Zn (x, ε) = n1/2 {Fn (x, ε) − F (x, ε)} ,

with Fn (x, ε) denoting the empirical distribution of (X, ε). Lemma 1 implies that
there exists a version Bn of 2 -dimensional Brownian bridge such that

sup
x,ε

|Zn (x, ε) − Bn {M(x, ε)}| = Oa.s.

(
n−1/2 log2 n

)
. (30)

Lemma 2 Under Assumptions (A2) and (A5), there exists α1 > 0 such that the
sequence Dn = nα1 satisfies

n−1/2h−1/2
1 Dn log

2 n → 0, n1/2h1/21 D−(1+η1)
n → 0,

∑∞
n=1

D−(2+η1)
n < ∞, D−η1

n h−1/2
1 → 0.

For such a sequence {Dn},

P {ω � ∃N (ω) , |εi (ω)| < Dn, 1 ≤ i ≤ n, n > N (ω)} = 1. (31)

Lemma 3 Under Assumptions (A1)–(A5), as n → ∞,

ρ̃LQ (x) − ρ(x) = σ1

{
1 − ρ2 (x)

}3/2
σ−1 (x) μ3(K

∗)β ′′ (x) h21/6

+ σ1

{
1 − ρ2 (x)

}3/2
σ−1 (x) n−1h−1

1 f −1 (x)

×
∑n

i=1
K ∗
h1(Xi − x)σ (Xi ) εi

+ u p

(
h21 + n−1/2h−3/2

1 log−1/2 n
)

. (32)

Proof From the definition of ρ̃LQ(x) in ( 15), the Taylor series expansions, and β̂ (x)−
β (x) = Up

(
n−1/2h−3/2

1 log1/2 n + h21

)
, one has

ρ̃LQ (x) − ρ(x) = σ1

{
1 − ρ2 (x)

}3/2
σ−1 (x)

{
β̂ (x) − β (x)

}
(33)

+Up

(
n−1h−3

1 log n + h41

)
.
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Write Y as the sum of a signal vector µ = {μ (X1) , . . . , μ (Xn)}T and a noise vector
E = {σ (X1) ε1, . . . , σ (Xn) εn}T ,

Y = µ + E. (34)

The local quadratic estimator β̂ (x) has a noise and bias error decomposition

β̂ (x) − β (x) = I (x) + I I (x),

in which the bias term I (x) and noise term I I (x) are

I (x) = e
T
1 (XTWX)−1XTW

× {
µ − μ (x)Xe0 − β (x)Xe1 − β ′ (x) /2Xe2

}
, (35)

I I (x) = e
T
1 (XTWX)−1XTWE. (36)

where ek, k = 0, 1, 2, as defined in (8), X in (9),W in (10), µ and E in (34). Standard
arguments from kernel smoothing theory yield that

I (x) = μ3(K
∗)β ′′ (x) h21/6 + u p(h

2
1), (37)

in which μ3 (K ∗) = ∫
v3K ∗ (v) dv. Likewise,

I I (x) = n−1h−1
1 f −1 (x)

∑n

i=1
K ∗
h1(Xi − x)σ (Xi ) εi

{
1 + u p

(
log−1 n

)}

= n−1h−1
1 f −1 (x)

∑n

i=1
K ∗
h1(Xi − x)σ (Xi ) εi

+ u p

(
n−1/2h−3/2

1 log−1/2 n
)

. (38)

Putting together (33), (37) and (38) completes the proof of the lemma.

Now from Lemma 3, one can rewrite (32) as

ρ̃LQ (x) − ρ(x) = σ1

{
1 − ρ2 (x)

}3/2
σ−1 (x) μ3(K

∗)β ′′ (x) h21/6

+ σ1

{
1 − ρ2 (x)

}3/2
f −1/2 (x) n−1/2h−3/2

1 Y (x)

+ u p

(
n−1/2h−3/2

1 log−1/2 n + h21

)
, (39)

in which the process

Y (x) = h1/21 σ−1(x) f −1/2 (x) n−1/2
∑n

i=1
K ∗
h1(Xi − x)σ (Xi ) εi , x ∈ In . (40)

Define next four stochastic processes, which approximate each other in probability
uniformly over In or have the exact same distributions over In . More precisely, with
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Dn defined in Lemma 2, and Bn in Lemma 1, let

Y0(x) = h1/21 σ−1(x) f −1/2 (x)
∫

R

K ∗
h1(u − x)ε I{|ε|≤Dn}dBn {M(u, ε)} , (41)

Y1(x) = h1/21 σ−1(x) f −1/2 (x)
∫

R

K ∗
h1(u − x)ε I{|ε|≤Dn}dWn {M(u, ε)} , (42)

Y2(x) = h1/21 σ−1(x) f −1/2 (x)
∫

R

K ∗
h1(u − x) f 1/2(u)σ (u)sn (u) dWn(u), (43)

where

s2n (u) =
∫

R

ε2 I{|ε|≤Dn}dF (ε |u ) ,

and satisfies that

sup
u∈In

∣
∣∣s2n (u) − 1

∣
∣∣ = sup

u∈In

∫

R

ε2 I{|ε|>Dn}dF (ε |u ) ≤ Mη1D
−η1
n , (44)

Y3(x) = h1/21

∫

R

K ∗
h1 (u − x) dWn (u) . (45)

Lemma 4 Under Assumptions (A2)–(A5), as n → ∞,

sup
x∈In

∣∣∣Y (x) − Y D (x)
∣∣∣ = Op

(
n1/2h1/21 D−1−η1

n

)
,

where, for x ∈ In,

Y D (x) = h1/21 σ−1(x) f −1/2 (x) n−1/2

×
∑n

i=1
K ∗
h1(Xi − x)σ (Xi ) εi I{|ε|≤Dn}. (46)

Proof Using notations from Lemma 1, the processes Y (x) defined in (40) and Y D(x)
can be written as

Y (x) = h1/21 σ−1(x) f −1/2 (x)
∫∫

K ∗
h1(u − x)σ (u) εdZn (u, ε) ,

Y D(x) = h1/21 σ−1(x) f −1/2 (x)
∫∫

K ∗
h1(u − x)σ (u) ε I{|ε|≤Dn}dZn (u, ε) .
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The tail part Y (x) − Y D (x) is bounded uniformly over In by

sup
x∈In

h1/21 σ−1(x) f −1/2 (x)

∣∣∣∣

∫∫
K ∗
h1(u − x)σ (u) ε I{|ε|>Dn}dZn (u, ε)

∣∣∣∣

≤ sup
x∈In

h1/21 σ−1(x) f −1/2 (x) n−1/2

×
∣∣
∣
∑n

i=1
K ∗
h1 (Xi − x) σ (Xi ) εi I{|εi |>Dn}

∣∣
∣ (47)

+ sup
x∈In

n1/2h1/21 σ−1(x) f −1/2 (x)

×
∣∣∣∣

∫∫
K ∗
h1(u − x)σ (u) ε I{|ε|>Dn}dF (u, ε)

∣∣∣∣ . (48)

By (31) in Lemma 2 and Borel–Cantelli Lemma, the first term in Eq. (47) is
Oa.s.

(
n−a

)
for any a > 0, for instance a = 100, and the second term in Eq. (48)

is bounded by

sup
x∈In

n1/2h1/21 f −1/2 (x) σ−1(x)

×
∫ ∣∣K ∗

h1(u − x)
∣∣ σ (u) f (u)

[∫
|ε| I{|ε|>Dn}dF (ε |u )

]
du

≤ sup
x∈In

n1/2h1/21 f −1/2 (x) σ−1(x)Mη1D
−(1+η1)
n

∫ ∣∣K ∗
h1(u − x)

∣∣ σ (u) f (u) du

≤ Cn1/2h1/21 D−1−η1
n = O

(
n1/2h1/21 D−1−η1

n

)
.

Lemma 5 Under Assumptions (A2)–(A5), as n → ∞,

sup
x∈In

∣∣∣Y D (x) − Y0 (x)
∣∣∣ = Op

(
n−1/2h−1/2

1 Dn log
2 n

)
.

Proof First,
∣∣Y D (x) − Y0 (x)

∣∣ can be written as

h1/21 σ−1(x) f −1/2 (x)
∫∫

K ∗
h1(u − x)σ (u) ε I{|ε|≤Dn}d [Zn (u, ε) − Bn {M(u, ε)}] ,

which becomes the following via integration by parts

h1/21 σ−1(x) f −1/2 (x)

×
∫∫

σ (u) [Zn (u, ε) − Bn {M (u, ε)}] d {
ε I{|ε|≤Dn}

}
d
{
K ∗
h1 (u − x)

}
.
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Next, from the strong approximation result in Eq. (30) and the first condition in Lemma
2, supx∈In

∣∣Y D (x) − Y0 (x)
∣∣ is bounded by

Oa.s.

(
h1/21 h−2

1 n−1/2h1Dn log
2 n

)
= Oa.s.

(
n−1/2h−1/2

1 Dn log
2 n

)
,

thus completing the proof of the lemma.

Lemma 6 Under Assumptions (A2)–(A5), as n → ∞,

sup
x∈In

|Y0 (x) − Y1 (x)| = Op

(
h1/21

)
.

Proof Based on Rosenblatt transformation M(x, ε) defined in Eq. (29) and according
to Lemma 2, the term |Y0 (x) − Y1 (x)| is bounded by

sup
x∈In

h1/21 σ−1(x) f −1/2 (x)

×
∣∣
∣∣

∫∫
K ∗
h1 (u − x) σ (u) |ε| I{|ε|≤Dn}dM(u, ε)Wn (1, 1)

∣∣
∣∣

≤ sup
x∈In

h1/21 σ−1(x) f −1/2 (x) |Wn (1, 1)|

×
∫ ∣∣K ∗

h1 (u − x)
∣∣ σ (u) f (u) du

{∫
|ε| I{|ε|≤Dn}dF (ε |u )

}
= Op

(
h1/21

)
.

The next lemma expresses the distribution of Y1 (x) in terms of one-dimensional
Brownian motion.

Lemma 7 The process Y1 (x) has the same distribution as Y2 (x) over x ∈ In .

Proof By definitions, Y1 (x) defined in (42) and Y2 (x) in (43) are Gaussian processes
with zero mean and unit variance. They have the same covariance functions as

cov
{
Y1 (x) ,Y1

(
x ′)} = h1/21 σ−1(x) f −1/2 (x) h1/21 σ−1(x ′) f −1/2 (x ′)

×
∫

K ∗
h1(u − x)K ∗

h1(u − x ′) f (u)σ 2(u)s2n (u) du

= cov
{
Y2 (x) ,Y2

(
x ′)} .

Hence, according to Itô’s Isometry Theorem, they have the same distribution.

Lemma 8 Under Assumptions (A2)–(A5), as n → ∞,

sup
x∈In

|Y2 (x) − Y3 (x)| = Op

(
h1/21 + h−1/2

1 D−η1
n

)
.
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Proof By the aforementioned condition in Lemma 2 and Eq. (44), supx∈In |Y2 (x)
−Y3 (x)| is almost surely bounded by

sup
x∈In

|Wn (u)| h1/21

∣∣∣
∣∣

∫
d

[

K ∗
h1 (u − x)

[{
f (u)

f (x)

}1/2 {
σ (u)

σ (x)

}
sn (u) − 1

]]∣∣∣
∣∣

≤ sup
x∈In

|Wn (u)| h1/21 h−1
1

×
∫

h−1
1

∣∣∣
∣K

∗′
(
u − x

h1

)∣∣∣
∣

[{
f (u)

f (x)

}1/2 {
σ (u)

σ (x)

}
sn (u) − 1

]

+
∣∣∣
∣K

∗
(
u − x

h1

)∣∣∣
∣

[{
f (u)

f (x)

}1/2 {
σ (u)

σ (x)

}
sn (u) − 1

]′

du

= Op

(
h−1/2
1

)
{I I I (x) + I V (x)} ,

where the term I I I (x) is bounded by

sup
x∈In

Ch−1
1

∥∥K ∗∥∥∞ f −1/2 (x) σ−1 (x) h1

×
∣∣∣
[
h1/2

{
f ′ (x)

}1/2
σ (u) sn (u) + f 1/2 (x) {σ (u) sn (u) − σ (x)}

]∣∣∣

≤ C
∥∥K ∗∥∥∞ C−1/2

f C−1
σ

{
h1/2 +

∥∥∥s2n − 1
∥∥∥∞

}

≤ C
(
h1 + D−η1

n

)
,

and the term I V (x) is bounded by

Ch1ch12
−1 f ′ (u) f −1/2 (u) f −1/2 (x) σ (u) σ−1 (x) sn (u)

+ Ch1 f
1/2 (u) f −1/2 (x)

{
σ ′ (u) σ−1 (x) sn (u) + σ (u) s′

n (u) /σ (x)
}

≤ Ch1
(
2−1

∥
∥ f ′∥∥∞ C f ‖sn‖∞ + ∥

∥σ ′∥∥∞ C−1
σ ‖sn‖∞ + ∥

∥s′
n

∥
∥∞

)

≤ Ch1.

Putting together the above, one obtains that

supx∈In |Y2 (x) − Y3 (x)| = Op

(
h−1/2
1

)
{I I I (x) + I V (x)}

= Op

(
h1/21 + h−1/2

1 D−η1
n

)
+ Op

(
h1/21

)
,

completing the proof of this lemma.
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Proof of Proposition 1 The absolute maximum of {Y3 (x) , x ∈ In} is the same as that
of

{
h−1/2
1

∫
K ∗

(
u

h1
− x

)
dWn (u) , x ∈

[
ah−1

1 + 1, bh−1
1 − 1

]}

=
{∫

K ∗ (v − x) dWn (v) ,x ∈
[
ah−1

1 + 1, bh−1
1 − 1

]}
. (49)

For process ξ (x) = ∫
K ∗(v− x)dWn (v), x ∈

[
ah−1

1 + 1, bh−1
1 − 1

]
, the correlation

function is

r (x − y) = E {ξ (x) ξ (y)}
var1/2 {ξ (x)} var1/2 {ξ (y)} ,

which implies that

r (t) =
∫
K ∗ (v) K ∗ (v − t) dv

∫
K ∗ (v)2 dv

.

Define next a Gaussian process ς (t) , 0 ≤ t ≤ T = Tn = (b − a) /h1 − 2,

ς (t) = ξ
(
t + ah−1

1 + 1
){∫

K ∗ (v)2 dv

}−1/2

,

which is stationary with mean zero and variance one, and covariance function

r (t) = Eς (s) ς (t + s) = 1 − Ct2 + o
(
|t |2

)
ast → 0,

with C = CK ∗′/2CK ∗ . Then applying Theorems 11.1.5 and 12.3.5 of Leadbetter et al.
(1983), one has for h1 → 0 or T → ∞,

P
[
aT

{
supt∈[0,T ] |ς (t)| − bT

} ≤ z
] → e−2e−z

, ∀z ∈ R,

where aT = (2 log T )1/2 and bT = aT + a−1
T

{√
C (K ∗)/2π

}
. Note that for ah1 , bh1

defined in (21), as n → ∞,

ah1a
−1
T → 1, aT

(
bT − bh1

) = O
(
log1/2 n × h1 log

−1/2 n
)

→ 0.

Hence, applying Slutsky’s Theorem twice, one obtains that

ah1
{
supt∈[0,T ] |ς (t)| − bh1

} = ah1a
−1
T

[
aT

{
supt∈[0,T ] |ς (t)| − bT

}]

+ ah1
(
bT − bh1

)

converges in distribution to the same limit as aT
{
supt∈[0,T ] |ς (t)| − bT

}
. Thus,

P

(

ah1

[
supx∈In |Y3 (x)|

{∫
K ∗ (v)2 dv

}1/2 − bh1

]

≤ z

)

→ e−2e−z
, ∀z ∈ R.
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Next applying Lemma 8 and Slutsky’s Theorem, ∀z ∈ R,

P

(

ah1

[
supx∈In |Y2 (x)|

{∫
K ∗ (v)2 dv

}1/2 − bh1

]

≤ z

)

→ e−2e−z
. (50)

Furthermore, applying Lemma 7 and Slutsky’s Theorem, the limiting distribution (50)
is the same as

P

(

ah1

[
supx∈In |Y1 (x)|

{∫
K ∗ (v)2 dv

}1/2 − bh1

]

≤ z

)

→ e−2e−z
.

Furthermore, applying Lemmas 1 to 6 and Slutsky’s Theorem, one obtains

P

(

ah1

[
supx∈In |Y (x)|

{∫
K ∗ (v)2 dv

}1/2 − bh1

]

≤ z

)

→ e−2e−z
. (51)

By taking 1 − α = e−2e−z
for α ∈ (0, 1), the above (51) implies that

lim
n→∞ P

{
ρ (x) ∈ ρ̃LQ(x) ± ah1Vn(x)Qn (α) , x ∈ In

} = 1 − α.

Thus, an infeasible SCB for ρ (x) over In is

ρ̃LQ(x) ± ah1Vn(x)Qn (α) ,

which establishes Proposition 1.

Proof of Theorem 1 Applying Taylor expansion to ρ̂LQ(x) − ρ̃LQ (x), its asymp-
totic order is the lower of σ̂ 2

1 − σ 2
1 and σ̂ 2

SK(x) − σ 2 (x). While σ̂ 2
1 − σ 2

1 =
Op

(
n−1/2

)
, supx∈[a+h2,b−h2]

∣∣σ̂ 2
SK(x)−σ 2 (x)

∣∣ is of orderOp

(
n−1/2h−1/2

2 log1/2 n
)

according to Cai and Yang (2015), and of order op
(
n−1/2h−3/2

1 log−1/2 n
)
by apply-

ing (16). As (17) entails that In ⊂ [a + h2, b − h2] for large enough n, one has

sup
x∈In

∣
∣∣σ̂ 2

SK(x) − σ 2 (x)
∣
∣∣ = op

(
n−1/2h−3/2

1 log−1/2 n
)

, (52)

and thus supx∈In
∣∣ρ̂LQ(x) − ρ̃LQ (x)

∣∣ = op
(
n−1/2h−3/2

1 log−1/2 n
)
. Hence, the proof

of the theorem is complete.

Proof of Theorem 2 Proposition 1, Theorem 1, and repeated applications of Slutsky’s
Theorem entail that

lim
n→∞ P

{
ρ (x) ∈ ρ̂LQ (x) ± ah1 V̂n(x)Qn (α) , x ∈ In

}
= 1 − α,

which yields the oracle SCB for ρ (x) over In in Theorem 2.
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