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Abstract
Asymptotically correct simultaneous confidence bands (SCBs) are proposed in both
multiplicative and additive form to compare variance functions of two samples in the
nonparametric regression model based on deterministic designs. The multiplicative
SCB is based on two-step estimation of ratio of the variance functions, which is as
efficient, up to order n−1/2, as an infeasible estimator if the two mean functions are
known a priori. The additive SCB, which is the log transform of the multiplicative
SCB, is location and scale invariant in the sense that the width of SCB is free of
the unknown mean and variance functions of both samples. Simulation experiments
provide strong evidence that corroborates the asymptotic theory. The proposed SCBs
are used to analyze several strata pressure data sets from the Bullianta Coal Mine in
Erdos City, Inner Mongolia, China.

Keywords Brownian motion · B-spline · Kernel · Oracle efficiency · Strata pressure ·
Variance ratio

1 Introduction

Nonparametric simultaneous confidence band (SCB) is a useful tool for statistical
inference about the global properties of an entire unknown curve or function. It was
first constructed in Bickel and Rosenblatt (1973) for a kernel density function. Then
nonparametric SCB was soon extended to regression function, see Johnston (1982),
Härdle (1989), Härdle andMarron (1991), Eubank and Speckman (1993), Xia (1998),
and Claeskens and Van Keilegom (2003) for early works about SCB. SCB not only is
a theoretically beautiful construct, but also has wide applications in many areas such
as sample survey and functional data analysis, see Zhao and Wu (2008), Ma et al.
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(2012), Cao et al. (2012, 2016), Song et al. (2014), Wang et al. (2014), Zheng et al.
(2014, 2016), Gu et al. (2014), Cai and Yang (2015), Gu and Yang (2015), Wang
et al. (2016), Zhang and Yang (2018), and Cai et al. (2020) for recent development on
nonparametric SCBs.

In the context of nonparametric regression model, adaptive SCB for the regression
function was studied in Hall and Titterington (1988). A rather undesirable limitation
of adaptive SCBs is their reliance on the assumption of i.i.d. Gaussian errors and
heteroscedasticity (constant variance function). Alternatively, Eubank and Speckman
(1993) obtained the SCB for the mean function based on kernel smoothing without
Gaussianity assumption on errors; however, itwas also under the restrictive assumption
of homoscedasticity, and the mean function being periodic. Wang (2012) constructed
a spline SCB for nonparametric mean function based on deterministic designs and
strongly mixing dependent errors, but the SCB is asymptotically conservative rather
than correct. For variance function estimation, Brown and Levine (2007) and Levine
(2006) proposed difference-based kernel estimators and an approach of bandwidth
selection, but without SCB. Song and Yang (2009) and Cai and Yang (2015) had
investigated the SCB for the variance function based on random design, while for
deterministic design,Cai et al. (2019) has provided theoretically justifiedSCBs for both
mean and variance functions. All these existingworks on SCB concern exclusively one
sample problems. The currentwork extends these to two sample comparison problems.

Testing hypotheses about the difference of twomeans led to assumptions on the ratio
of population variances, see Welch (1938) and James (1951). When the samples were
drawn from a given normal bivariate population, Fisher (1924) derived the distribution
of log ratio of two sample variance, see also Bose and Mahalanobis (1935), Finney
(1938), Scheffé (1942) and Gayen (1950) for distribution theory of the ratio of sample
variances. In thiswork,we propose additive andmultiplicative forms of asymptotically
correct simultaneous confidenceband (SCB) that are independent ofmean andvariance
functions (therefore location and scale invariant), for comparing the variance functions
from two independent nonparametric regression.

To be more precise, denote by
{(
Xs,i ,Ys,i

)}ns
i=1 , s = 1, 2 the two samples with

sample sizes ns . Often encountered in applications (e.g., the strata pressure data dis-
cussed in Sect. 5.2) is the so-called deterministic design nonparametric regression
model:

Ys,i = ms

(
i

ns

)
+ σs

(
i

ns

)
εs,i , i = 1, . . . , ns, s = 1, 2 (1)

in which the Ys,i ’s are responses at equally spaced design points i/ns, 1 ≤ i ≤ ns ,
and

{
εs,i

}ns
i=1 are unobserved i.i.d. random errors with E

(
εs,1

) = 0, var
(
εs,1

) = 1.
Suppose that the unknown mean and variance functions ms (·) and σ 2

s (·) in model
(1) are smooth, Jiang et al. (2020) has established asymptotically correct SCB for the
difference m1 (·) − m2 (·) of the two mean functions, under a somewhat surprising
assumption that the ratio of two variance functions is a constant: σ 2

1 (·) /σ 2
2 (·) ≡ a2.

As this thought-provoking assumption itself requires testing, asymptotically correct
SCBs are constructed in this paper for the ratio σ 2

1 (·) /σ 2
2 (·) as well as its logarithm

ln σ 2
1 (·) − ln σ 2

2 (·). To illustrate the usage of the proposed method, 95% SCB for the
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variance ratio functions is constructed for several strata pressure data sets collected
from theBuliantaCoalMine located inErdosCity, InnerMongolia,China.Meanwhile,
the SCB for the ratio of two-sample variance functions is used to test the null hypothesis
H0 : σ 2

1 (x) /σ 2
2 (x) ≡ r for some constant r > 0. Figures 2 and 3 depict the SCB

for four pairs of strata pressure data, and the conclusions are weak rejection for the
fourth pair with p-value = 0.023 and no rejection for the first three pairs with larger
p-values.

The remainder of the paper is organized as follows. Section 2 states themain asymp-
totic theoretical results. Section 3 provides insight into proofs and Sect. 4 presents
concrete steps to implement the SCB. Section 5 reports some simulation results and
analysis of the strata pressure data. The lemmas and proofs are given in the “Appendix”.

2 Main result

In this section the SCB is formulated for the ratio of nonparametric regression variance
functions σ 2

1 (x) /σ 2
2 (x) inmodel (1). The variance function σ 2

s (·) , s = 1, 2measures
the heteroscedastic variation of the errors es,i = Ys,i −ms (i/ns) = σs (i/ns) εs,i , 1 ≤
i ≤ ns in model (1). Clearly E

(
e2s,i

)
= σ 2

s (i/ns), E
(
e4s,i

)
= σ 4

s (i/ns) μs,4, s =
1, 2 in which μs,4 are fourth moments of εs,i , see Assumption (A2) below. Denote

σ 2
0,s(x) = σ 4

s (x)
(
μs,4 − 1

)
then var(e2s,i ) = E

(
e4s,i

)
−

{
E
(
e2s,i

)}2 = σ 2
0,s (i/ns).

Following Cai and Yang (2015), if ms(x) were known by ‘oracle’, one can begin

with smoothing pseudo data sets
{(

i/ns, e2s,i

)}ns
i=1

to obtain an infeasible oracle

estimator σ̃ 2
s (·) for σ 2

s (·) s = 1, 2. Consequently, a plug-in oracle estimator for
σ 2
1 (x) /σ 2

2 (x) is σ̃ 2
1 (x) /σ̃ 2

2 (x). The oracle estimators are

σ̃ 2
s (x) = n−1

s
∑ns

i=1 Kh (i/ns − x) e2s,i
n−1
s

∑ns
i=1 Kh (i/ns − x)

(2)

= n−1
s f̂ −1

s (x)
n1∑

i=1

Kh (i/ns − x) e2s,i , s = 1, 2,

in which f̂s (x) = n−1
s

∑ns
i=1 Kh (i/ns − x) , s = 1, 2, K (u) is a kernel function,

h = max(hn1, hn2), where hn1, hn2 are sequences of smoothing parameters called
bandwidths, and Kh (u) = h−1K (u/h) is the kernel function rescaled by h. However
the σ̃ 2

s (x)’s are infeasible as the errors
{
es,i

}n
i=1 , s = 1, 2 are unobservable. Cai et al.

(2019) proposed spline-kernel estimators σ̂ 2
s (x) to mimic σ̃ 2

s (x)

σ̂ 2
s (x) = n−1

s f̂ −1
s (x)

ns∑

i=1

Kh (i/ns − x) ê2s,i , s = 1, 2,
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where ês,i = Ys,i − m̂s,p (i/ns) , s = 1, 2 and m̂s,p(x), s = 1, 2 are the pth order
spline estimator for ms (x) with integer p > 0,

m̂s,p(x) = arg min
g∈H(p−2)

N

ns∑

i=1

{
Ys,i − g (i/n)

}2
, (3)

in which H(p−2)
N = H(p−2)

N [0, 1] is the space of spline functions on interval [0, 1]
defined below.

Divide the interval [0, 1] into (N + 1) subintervals J j = [
χ j , χ j+1

)
, j =

0, 1, 2, . . . , N by equally spaced points
{
χ j

}N
j=1 called interior knots,

0 = χ0 < χ1 < · · · < χN+1 = 1, χ j = j/ (N + 1) , j = 0, 1, . . . , N + 1.

H(p−2)
N is the space of functions that are polynomials of degree (p − 1) on each J j with

continuous (p − 2)th derivative on [0, 1]. For instance, H(−1)
N consists of functions

that are constant on each J j , and H(0)
N the space of functions that are linear on each

J j and continuous on [0, 1] .
For s = 1, 2, the estimator m̂s,p(x) in (3) can be expressed as

m̂s,p(x) =
Ns∑

j=1−p

λ̂s, j,p B j,p (x) ,

where the vector
(
λ̂s,1−p,p, . . . , λ̂s,N ,p

)T
is the solution of the least-squares problem

(
λ̂s,1−p,p, . . . , λ̂s,N ,p

)T = argminRNs+p

ns∑

i=1

⎧
⎨

⎩
Ys,i −

Ns∑

j=1−p

λs, j,p B j,p (x)

⎫
⎬

⎭

2

. (4)

Denote by ψ(s) (x) the sth order derivative of a function ψ (x). For θ ∈ (0, 1] and
integer p ≥ 0, let C p,θ [0, 1] be the space of functions with θ−Hölder continuous
pth-order derivatives on [0, 1] with seminorm ‖·‖p,θ

C p,θ [0, 1] =
{

φ (x) : ‖φ‖p,θ = sup
x �=x ′,x,x ′∈[0,1]

∣∣φ(p) (x) − φ(p)
(
x ′)∣∣

|x − x ′|θ < +∞
}

,

and denote by C (p) [0, 1] the space of p-times continuously differentiable functions.
For sequences of positive real numbers cn and dn , cn 
 dn means cn/dn → 0 as
n → ∞.

Denote n = min (n1, n2), and ηs,i =
(
ε2s,i − 1

) (
μs,4 − 1

)−1/2, then E(ηs,i ) = 0,

E(η2s,i ) = 1, s = 1, 2. We need the following assumptions to construct SCBs for

σ 2
1 (x) /σ 2

2 (x).
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(A1) The functions ms (·) ∈ C p [0, 1] , s = 1, 2 for integer p > 1.
(A2) The errors εs,i , s = 1, 2 satisfy E(εs,i ) = 0, E(ε2s,i ) = 1,E(ε4s,i ) = μs,4 < ∞

and σ 2
s (·) ∈ C p0−1,θ0 [0, 1] for integer p0 > 1, θ0 ∈ (0, 1] with 0 < cσ ≤

σ 2
s (x) ≤ Cσ < +∞ for any x ∈ [0, 1].

(A3) There exist constants c,C ∈ (0,∞) such that 0 < c ≤ n1/n2 ≤ C < ∞ as
n → ∞.

(A4) There exist β
′
s ∈ (0, 1/2 − 1/ (4θ0 + 4p0 − 2)) ,C

′
s ∈ (0,+∞) , γ

′
s ∈

(1,+∞) and i.i.d. N (0, 1) variables
{
Z

′
s,ins

}ns
i=1

, s = 1, 2 such that

P

{

max
1≤l≤ns

∣∣∣∣∣

l∑

i=1

ηs,i −
l∑

i=1

Z
′
s,ins

∣∣∣∣∣
> n

β
′
s

s

}

< Csn
−γ

′
s

s .

(A5) There exist Cs ∈ (0,+∞) , γs ∈ (1,+∞) , βs ∈ (0, b ] , and i.i.d. N (0, 1)
variables

{
Zs,ins

}n
i=1 , s = 1, 2 such that

P

{

max
1≤l≤ns

∣∣∣∣∣

l∑

i=1

εs,i −
l∑

i=1

Zs,ins

∣∣∣∣∣
> nβs

}

< Csn
−γs ,

where b =min{1 − 3/2 (2p + 1) − t, 1 − 5/2 (2p + 1) − 5t/2 (2p + 3) , 1/2−
1/ (4θ0 + 4p0 − 2)}.

(A6) The kernel function K ∈ C (1) (R), is of order p0, and is supported on [−1, 1].
(A7) The bandwidths hns , s = 1, 2, satisfy log hns/ (− log ns) → t > 0 as n → ∞

and

max

{
n−1/2
s log1/2 ns, n

2β
′
s−1

s log ns, n
−2(p−1)/(2p+1)
s

}

 hns


 (ns log ns)
−1/(2θ0+2p0−1) .

Hence 1/ (2θ0 + 2p0 − 1) ≤ t ≤ min
{
1/2, 1 − 2max

{
β ′
1, β

′
2

}
, 2

(p − 1) / (2p + 1)} .

(A8) The number of interior knots Ns satisfies log Ns/ log ns → τ for some τs >

0, s = 1, 2 and

max
{
n1/4ps , h−1/(p−1)

ns n(βs−1/2)/(p−1)
s , h−1/2(p−1)

ns log1/2(p−1) ns
}


 Ns


 min
{
hns

2/3n2(1−βs )/3
s , n2(1−βs )/5

s , n1/3s h1/3ns log−1/3 ns
}

,

Consequently, max{1/4p, (2t + 2βs − 1) /2 (p − 1) , t/2 (p − 1)} ≤ τs ≤
min {2 (1 − βs) /3 − 2t/3, 2 (1 − βs) /5.1/3 − t/3} .

Assumption (A1) is a general condition for spline regression of themean function in
model (1). Assumption (A2) is adopted fromHärdle (1989). Assumption (A3) requires
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only that the ratio of sample sizes is comparable, and Assumption (A6) is standard for
kernel function. Assumption (A7) is a general condition on the selection of bandwidth

hs to ensure the asymptotic distribution of ln
σ̃ 2
1 (x)

σ̃ 2
2 (x)

. Assumption (A8) on the choice

of knot number Ns guarantees the oracle efficiency in Theorem 1. According to Cai
et al. (2019), (A4) and (A5) are ensured by Assumption (A4’).

(A4’) There exists η′
s > 2/βs−2, βs ∈ (0, b ] as in (A5) such that E

∣∣εs,1
∣∣4+2η′

s < +∞.

In order to construct SCB forσ 2
1 (x) /σ 2

2 (x), one first constructs SCB for ln σ 2
1 (x)−

ln σ 2
2 (x), and then takes exponential transformation to obtain the desired result. From

now on, denote In = [hn, 1 − hn]. Proofs of the following Propositions 1 and 2 are
in the “Appendix”.

Proposition 1 Under Assumptions (A2)–(A5), as n → ∞,

P

[

ah

{

v−1
n sup

x∈In

∣∣∣∣∣
ln

σ̃ 2
1 (x)

σ̃ 2
2 (x)

− ln
σ 2
1 (x)

σ 2
2 (x)

∣∣∣∣∣
− bh

}

≤ z

]

→ exp {−2 exp (−z)} , z ∈ R,

where ah = {
2log

(
h−1

)}1/2
, bh = ah + a−1

h

{
2−1log

(
CK /

(
4π2

))}
,

CK =
∫ 1

−1
K (1) (v)2 dv/

∫ 1

−1
K (v)2 dv,

vn = h−1/2
[{

n−1
1

(
μ1,4 − 1

) + n−1
2

(
μ2,4 − 1

)} ∫ 1

−1
K 2 (u) du

]1/2
. (5)

Proposition 2 Under Assumptions (A1)–(A8), as n → ∞ the spline-kernel estimator

ln
σ̂ 2
1 (x)

σ̂ 2
2 (x)

is asymptotically as efficient as the ‘infeasible’ estimator ln
σ̃ 2
1 (x)

σ̃ 2
2 (x)

in the sense

that

sup
x∈In

∣∣∣∣∣
ln

σ̂ 2
1 (x)

σ̂ 2
2 (x)

− ln
σ̃ 2
1 (x)

σ̃ 2
2 (x)

∣∣∣∣∣
= op

(
n−1/2

)
.

Consequently, since ah ∼ log1/2 n, v−1
n = Op

(
n1/2h1/2

)
,

ahv
−1
n sup

x∈In

∣∣∣∣∣
ln

σ̂ 2
1 (x)

σ̂ 2
2 (x)

− ln
σ̃ 2
1 (x)

σ̃ 2
2 (x)

∣∣∣∣∣
= op (1) .

Propositions 1 and 2, Slutsky’s Theorem together imply the following.

Theorem 1 Under Assumptions (A1)–(A8),as n → ∞,

P

[

ah

{

v−1
n sup

x∈In

∣∣∣∣∣
ln

σ̂ 2
1 (x)

σ̂ 2
2 (x)

− ln
σ 2
1 (x)

σ 2
2 (x)

∣∣∣∣∣
− bh

}

≤ z

]

→ exp {−2 exp (−z)} ,
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in which ah, bh,CK and vn given in (5). Then, for any α ∈ (0, 1) ,

P

{

ln
σ 2
1 (x)

σ 2
2 (x)

∈ ln
σ̂ 2
1 (x)

σ̂ 2
2 (x)

± vn

(
a−1
h qα + bh

)
,∀x ∈ In

}

→ 1 − α,

where qα = −log {−1/2log (1 − α)} . Consequently, for any α ∈ (0, 1) ,

P

[
σ̂ 2
1 (x)

σ̂ 2
2 (x)

exp
{
−vn

(
a−1
h qα + bh

)}
≤ σ 2

1 (x)

σ 2
2 (x)

≤ σ̂ 2
1 (x)

σ̂ 2
2 (x)

exp
{
vn

(
a−1
h qα + bh

)}
,∀x ∈ In

]

→ 1 − α. (6)

Theorem 1 implies that the additive SCB’s contracting width is
{
n−1
1

(
μ1,4 − 1

)

+ n−1
2

(
μ2,4 − 1

)}1/2
h−1/2log1/2h−1, which does not depend on the unknown mean

functions ms (·) and variance functions σ 2
s (·) , s = 1, 2, in stark contrast to the SCB

for variance function of one sample in Song and Yang (2009), Cai and Yang (2015),
and Cai et al. (2019). In the special case p = 4, p0 = 2, θ0 = 1 as in Subsection
4.1, the implemented order of h satisfying Assumption (A7) is n−1/5

1 log−1/5−δ1n1
or n−1/5

2 log−1/5−δ1n2 for any δ1 > 0. Thus, the optimal bandwidth order is under-
smoothed by log−1/5−δ1n1 or log−1/5−δ1n2, and the contracting width of the additive

SCB is
{
n−1
1

(
μ1,4 − 1

) + n−1
2

(
μ2,4 − 1

)}1/2
n1/101 log3/5+0.5δ1n1.

3 Error decomposition

Asymptotic SCB for ln σ 2
1 (x) − ln σ 2

2 (x) is constructed starting with investigating

supx∈In

∣∣∣∣ln
σ̃ 2
1 (x)

σ̃ 2
2 (x)

− ln
σ 2
1 (x)

σ 2
2 (x)

∣∣∣∣. Consider that

σ̃ 2
s (x) − σ 2

s (x) = n−1
s f̂ −1

s (x)
ns∑

i=1

Kh

(
i

ns
− x

)
e2s,i − σ 2

s (x)

= n−1
s f̂ −1

s (x)
ns∑

i=1

Kh

(
i

ns
− x

){
e2s,i − σ 2

s (x)
}

= n−1
s f̂ −1

s (x)
ns∑

i=1

Kh

(
i

ns
− x

){
σ 2
s

(
i

ns

)
ε2s,i − σ 2

s (x)

}

= f̂ −1
s (x)

{
As,ns (x) + Bs,ns (x)

}
,

in which

As,ns (x) = n−1
s

ns∑

i=1

Kh

(
i

ns
− x

){
σ 2
s

(
i

ns

)
− σ 2

s (x)

}
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Bs,ns (x) = n−1
s

ns∑

i=1

Kh

(
i

ns
− x

){
σ 2
s

(
i

ns

)
ε2s,i − σ 2

s

(
i

ns

)}

Then the following stochastic processes approximate Bs,ns (x):

Bs,ns ,1 (x) = n−1
s

ns∑

i=1

Kh (i/ns − x) σ0,s(i/ns)Z
′
s,ins , (7)

Bs,ns ,2 (x) = n−1
s

ns∑

i=1

Kh (i/ns − x) σ0,s (x) Z
′
s,ins , (8)

Bs,ns ,3 (x) = n−1/2
s

∫
Kh (u − x) σ0,s (x) dWs,ns (u), x ∈ In (9)

where
{
Z

′
s,ins

}ns
i=1

are i.i.d. N (0, 1) variables satisfying (A4) and Ws,ns (u) is a two-

sided Brownian motion on (−∞,+∞) satisfying

Z
′
s,ins = √

n
{
Ws,ns (i/ns) − Ws,ns ((i − 1) /ns)

}
.

Define a Gaussian process

ζ (x) = n−1/2
1 ν

1/2
1,4

∫
K (x − r) dW1,n1(r) − n−1/2

2 ν
1/2
2,4

∫
K (x − r) dW2,n2(r)

[{
n−1
1 ν1,4 + n−1

2 ν2,4

} ∫ 1
−1 K

2 (u) du
]1/2 ,

x ∈
[
1, h−1 − 1

]
= In/h, (10)

in which ν1,4 = μ1,4 − 1 and ν2,4 = μ2,4 − 1.
The following result is essential for proving Theorem 1.

Proposition 3 Under Assumptions (A2), (A6) and (A7), as n → ∞,

P

[

ah

{

sup
x∈[1,h−1−1]

|ζ (x)| − bh

}

< z

]

→ exp {−2 exp (−z)} , z ∈ R,

where ah and bh are given in (5), and ζ (x) is defined in (10).

The proof of Proposition 3 is given in the “Appendix”.

4 Implementation

In this section, we describe detailed procedures for implementing the SCBs in Theo-
rem 1 based on two-sample data sets {(i/ns),Ys,i }nsi=1 in the model (1). This is used
throughout in Sect. 5 for simulations and real data examples.
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The default values are p = 4, p0 = 2, θ0 = 1 in (A1) and (A2) when constructing
the SCBs for the ratio function σ 2

1 (x) /σ 2
2 (x) in model (1) according to Theorem 1.

Meanwhile, one chooses a kernel function K and bandwidth h for computing the
spline-kernel estimates σ̂ 2

s (x), and then plugs in these estimates.
We choose the quartic kernel K (u) = 15

(
1 − u2

)
I {|u| ≤ 1} /16 to satisfy (A6),

and the bandwidths h = max(h1,rot × log−1/5−δ1 n1, h2,rot × log−1/5−δ1 n2) (δ1 > 0)
to satisfy (A7), where the rule-of-thumb bandwidth hs,rot, s = 1, 2 is from Equation
(4.3) of Fan and Gijbels (1996):

hs,rot =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

35
ns∑

i=1

{
ê2s,i −

4∑

k=0
âk (i/ns)k

}2

ns
ns∑

i=1

{
2̂a2 + 6̂a3 (i/ns) + 12̂a4 (i/ns)2

}2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

1/5

, (11)

in which (̂ak)4k=0 = argmin(ak )4k=0∈R5

ns∑

i=1

(
ê2s,i −

4∑

k=0
ak (i/ns)k

)2

. According to (11),

hs,rot is of order n−1/5
s and hns ∝ n−1/5

s log−1/5−δ1 ns, s = 1, 2, satisfying (A7).
We have found that h = max(h1,rot, h2,rot) log−1/2(n1 + n2)/2 works quite well via
extensive simulations; thus, that is what we recommend.

According to Theorem 1 of Xue and Yang (2006), for any m (x) ∈ C p [0, 1],
p ≥ 2, the optimal order of knots number Ns for ms(x) is n

1/(2p+1)
s , n1/9s , s = 1, 2

with p = 4. Denote the ‘optimal’ Ns by N̂ opt
s , the minimizer of the BIC defined below

over integers in
[
0.5Ns,r ,min

{
5Ns,r , Tb

}]
,where Ns,r = n1/9s and Tb = ns/4−1 to

ensure that N̂ opt
s is of order n1/9s and the total parameters in the least square estimation

is less than ns/4. This particular N̂
opt
s satisfies (A8), but is certainly not the only one.

Let Ŷs,i = m̂s,p (i/n) , s = 1, 2 be the predictor of the i th response Ys,i and qs,n =
(4 + Ns) represent the number of parameters in (4). The BIC value corresponding to
Ns is

BIC (Ns) = logMSE + qs,n log ns/ns, MSE = n−1
s

ns∑

i=1

(Ys,i − Ŷs,i )
2, s = 1, 2.

(12)

To estimate the centered fourth moment μs,4 of εs,1, s = 1, 2, one can use the
spline estimators m̂s,p (·) and σ̂ 2

s (·):

μ̂s,4 = n−1
s

ns∑

i=1

{
Ys,i − m̂s,p (i/n)

σ̂s (i/n)

}4

, s = 1, 2.
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The asymptotic 100 (1 − α)% SCB for variance ratio function σ 2
1 (x) /σ 2

2 (x) is:

[
σ̂ 2
1 (x)

σ̂ 2
2 (x)

exp
{
−v̂n

(
a−1
h qα + bh

)}
,
σ̂ 2
1 (x)

σ̂ 2
2 (x)

exp
{
v̂n

(
a−1
h qα + bh

)}]

, x ∈ In,

(13)

with v̂n = h−1/2
[{

n−1
1

(
μ̂1,4 − 1

) + n−1
2

(
μ̂2,4 − 1

)} ∫ 1
−1 K

2 (u) du
]1/2

.

5 Empirical studies

5.1 Monte Carlo examples

To investigate the finite-sample behavior of the proposed SCB in Section 2, the fol-
lowing two cases are examined.
Case 1:

m1 (x) = cos (3πx) ,m2 (x) = 2m1 (x) ,

σ1 (x) = 0.1 sin (2πx) + 0.2, σ2 (x) = 2σ1 (x) .

Case 2:

m1 (x) = cos (3πx) ,m2 (x) = 2m1 (x) ,

σ1 (x) = 0.1 sin (2πx) + 0.2, σ2 (x) = exp (x/4) − 0.9

exp (x/4) + 0.9
.

The error ε follows U
(
−√

3,
√
3
)

, N (0, 1) or the standardized t-distribution with

freedom 10, ε ∼ 0.81/2t10. The sample sizes are n1, n2 = 300, 600, 900, while for
the SCB, the confidence level 1 − α = 0.95, 0.99. The coverage frequencies by
SCB defined in (13) for σ 2

1 (x) /σ 2
2 (x) are reported in Table 1; these are relative

frequencies in 2000 replications of coverage of the true curve at equally spaced points
{xi = h + i(1 − 2h)/n, i = 1, 2, . . . , n = max (n1, n2)} on In . In all cases with ε ∼
U

(
−√

3,
√
3
)

, ε ∼ N (0, 1) and ε ∼ 0.81/2t10, the coverage frequencies improve

and approach the nominal level as the sample size n1 and n2 increases, which supports

Theorem 1. One also finds that the coverage frequencies for ε ∼ U
(
−√

3,
√
3
)

approach the nomial level best, and the coverage frequencies for ε ∼ N (0, 1) approach
the nomial level better than ε ∼ 0.81/2t10.

To visualize the SCB for the ratio of variance functions, Figure 1 were depicted
based on three cases of sample size in Case 1 with either ε ∼ N (0, 1) or ε ∼
U

(
−√

3,
√
3
)
and confidence level 95%. Each has center solid line as the true curve,

center dashed line as the estimated curve and the upper and lower thick lines the SCB.
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Table 1 The coverage frequencies of the SCBs in (6) of Theorem 1 for σ 2
1 (x) /σ 2

2 (x) based on 2000

replications with ε ∼ U
(
−√

3,
√
3
)

, ε ∼ N (0, 1) and ε ∼ 0.81/2t10 respectively

n1 n2 1 − α ε ∼ U
(
−√

3,
√
3
)

, ε ∼ N (0, 1) , ε ∼ 0.81/2t10
Case 1 Case 2

300 300 0.95 0.943, 0.931, 0.919 0.931, 0.918, 0.882

0.99 0.995, 0.988, 0.983 0.992, 0.987, 0.986

600 0.95 0.943, 0.929, 0.920 0.924, 0.917, 0.895

0.99 0.993, 0.991, 0.990 0.991, 0.981, 0.979

900 0.95 0.938, 0.930, 0.913 0.920, 0.915, 0.883

0.99 0.988, 0.987, 0.988 0.991, 0.988, 0.979

600 300 0.95 0.939, 0.933, 0.929 0.930, 0.914, 0.903

0.99 0.993, 0.994, 0.989 0.988, 0.985, 0.986

600 0.95 0.951, 0.938, 0.934 0.928, 0.936, 0.910

0.99 0.995, 0.995, 0.995 0.989, 0.992, 0.993

900 0.95 0.948, 0.948, 0.936 0.927, 0.937, 0.913

0.99 0.999, 0.997, 0.990 0.989, 0.990, 0.990

900 300 0.95 0.940, 0.933, 0.916 0.917, 0.925, 0.894

0.99 0.990, 0.988, 0.988 0.983, 0.988, 0.985

600 0.95 0.958, 0.956, 0.941 0.931, 0.941, 0.918

0.99 0.996, 0.994, 0.991 0.992, 0.995, 0.986

900 0.95 0.956, 0.951, 0.952 0.922, 0.941, 0.929

0.99 0.994, 0.995, 0.996 0.992, 0.992, 0.993

As expected, the SCBs for greater sample size are thinner and fit better than those for
smaller sample size.

5.2 Data examples

We have applied the two-sample SCB to data sets obtained from the research group at
China University of Mining and Technology headed by Professor Jiang Yaodong. The
data consists of strata pressure at the Bulianta Coal Mine located in Erdos City, Inner
Mongolia, China recorded inMay 2013. Strata pressure patterns, such as the range and
pressure periodicity in front of working face, are useful information for improving the
safety and accuracy of underground mining. For instance, accidents caused by sudden
increase of strata pressure are preventable by appropriate roof support design; see Ju
and Xu (2013) and Qian et al. (2010).

Measured in units of KN/m2, strata pressure is the vertical stress on the coal seam
roof in front of the working face, a working face is the underground location where
coal is peeled from the coal wall mechanically by miners. Data is collected at a record
distance of 0.80m by pressure sensors placed on top of the hydraulic support in front
of the working face. During the mining process, the hydraulic support moves forward
at a pace of 0.80m in the propulsion range from 295.5 to 705.1m, so the sample size
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(f)

Fig. 1 Plots of 95% SCB (thick) for σ 2
1 (x) /σ 2

2 (x) (solid) and the estimator σ̂ 2
1 (x) /σ̂ 2

2 (x) (dashed)

in Case 1, with a n1 = n2 = 300, ε ∼ N (0, 1); b n1 = n2 = 300, ε ∼ U
(
−√

3,
√
3
)

; c n1 =
n2 = 600, ε ∼ N (0, 1) ; d n1 = n2 = 600, ε ∼ U

(
−√

3,
√
3
)

; e n1 = n2 = 900, ε ∼ N (0, 1) ; f
n1 = n2 = 900, ε ∼ U

(
−√

3,
√
3
)
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Fig. 2 Plots of the null hypothesis curve of r̂ = n−1
1

∑n1
i=1 ê

2
1,i /n

−1
2

∑n2
i=1 ê

2
2,i (solid), SCB (thick) for

σ 2
1 (x) /σ 2

2 (x) and the spline-kernel estimator σ̂ 2
1 (x) /σ̂ 2

2 (x) (dashed), with a 95% SCB for pair 1; b
lowest simultaneous confidence band containing null hypothesis for pair 1; c 95% SCB for pair 2; d lowest
simultaneous confidence band containing null hypothesis for pair 2

is n = 1 + (705.1 − 295.5) /0.8 = 513, and the propulsion range is standardized to
interval [0, 1].

The strata pressure data are recorded at 28 sites. Out of the 28 sites, 8 sites are ran-
domly selected, and data sets of sample size 513 from these 8 sites are then randomly
divided into 4 pairs for variance function comparison. Figures 2 and 3 show the SCBs
(thick lines) computed according to (13) for the function σ 2

1 (x) /σ 2
2 (x), and spline-

kernel estimate σ̂ 2
1 (x) /σ̂ 2

2 (x) (dashed line). Engineers are interested in whether two
different sites have comparable variance functions. One therefore proposes the null
hypothesis H0 : σ 2

1 (x) /σ 2
2 (x) ≡ r to be tested by the SCB for the ratio of variance

functions σ 2
1 (·) /σ 2

2 (·). For the four pairs, since the lowest confidence levels of SCB
containing the horizontal line r̂ = n−1

1

∑n1
i=1 ê

2
1,i/n

−1
2

∑n2
i=1 ê

2
2,i are 73.3%, 60.8%,

59.5% and 97.7%, respectively, where r̂ is a consistent estimate of r under H0, one
retains the null hypothesis with the p-values= 0.267, 0.392, 0.405 and 0.023, respec-
tively. Thus, the strata pressure variance functions over the distance interval [295.5m,
705.1m] of the first three pairs differ only by constant multiples while the fourth pair
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Fig. 3 Plots of the null hypothesis curve of r̂ = n−1
1

∑n1
i=1 ê

2
1,i /n

−1
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∑n2
i=1 ê

2
2,i (solid), SCB (thick) for

σ 2
1 (x) /σ 2

2 (x) and the spline-kernel estimator σ̂ 2
1 (x) /σ̂ 2

2 (x) (dashed), with a 95% SCB for pair 3; b
lowest simultaneous confidence band containing null hypothesis for pair 3; c 95% SCB for pair 4; d lowest
simultaneous confidence band containing null hypothesis for pair 4

differs significantly by a nonconstant multiple, most noticeably spiking at the location
around 600m.

According to Jiang et al. (2020), SCB for the differencem1 (·)−m2 (·) of twomean
functions are constructed only when the variance functions are proportional, i.e., when
the aforementioned H0 is not rejected. The above findings allow one to compare the
mean strata pressure functions of two sites in the first three pairs by the SCB of Jiang
et al. (2020), but not the two sites in the fourth pair. Such comparison provides useful
safety information on relative levels of strata pressure function at various sites.

6 Conclusions

A spline-kernel estimator is proposed for the ratio of variance functions in nonpara-
metric regression model, which is shown to be oracle efficient, that is, it uniformly

approximates an infeasible estimator at the rate of op
(
n−1/2
1 + n−1/2

2

)
. A data-driven

procedure implements an asymptotical oracle SCB, which is location and scale invari-
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ant, centered around the spline-kernel variance ratio estimator, with limiting converge
probability equal to that of infeasible SCB. As illustrated by strata pressure data from
the Bullianta Coal Mine in Erdos City, Inner Mongolia, China, the theoretically jus-
tified SCB is a useful tool to check the ratio of variance functions in nonparametric
regression, and is expected to find wide application in many scientific disciplines.
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Appendix

The following is a reformulation of Theorems 11.1.5 and 12.3.5 in Leadbetter et al.
(1983).

Lemma 1 If a Gaussian process ς (s) , 0 ≤ s ≤ T is stationary with mean zero and
variance one, and covariance function statisfying

r (t) = Eς (s) ς (t + s) = 1 − C |t |α + o
(|t |α) , as t → 0

for some constant C > 0, 0 < α ≤ 2. Then as T → ∞,

P

[

aT

{

sup
t∈[0,T ]

|ς (t)| − bT

}

≤ z

]

→ e−2e−z
,∀z ∈ R,

where aT = (2 log T )1/2 and

bT = aT + a−1
T ×

{(
1

α
− 1

2

)
log

(
a2T /2

)
+ log (2π)−1/2

(
C

1
α Hα2

2−α
2α

)}

with H1 = 1, H2 = π−1/2.

Lemmas 2–4 are from Cai et al. (2019).

Lemma 2 Under Assumption (A6), for s = 1, 2, as n → ∞,

sup
x∈In

∣∣∣ f̂s (x) − 1
∣∣∣ = O

(
n−1
s h−2

)
.

Lemma 3 Under Assumptions (A2), (A6) and (A7), for s = 1, 2, as n → ∞,

sup
x∈In

∣∣As,ns (x)
∣∣ = O

(
hθ0+p0−1 + n−1

s h−1
)

.

123



C. Zhong, L. Yang

Lemma 4 Under Assumptions (A2)–(A4), (A6), (A7), for s = 1, 2, as n → ∞,

(a) sup
x∈[0,1]

∣∣Bs,ns (x) − Bs,ns ,1 (x)
∣∣ = Op

(
nβs−1
s h−1

)
,

(b) sup
x∈[0,1]

∣∣Bs,ns ,1 (x) − Bs,ns ,2 (x)
∣∣ = Op

(
n−1/2
s h1/2 log1/2 ns

)
,

(c) sup
x∈In

∣∣Bs,ns ,2 (x) − Bs,ns ,3 (x)
∣∣ = Op

(
n−3/2
s h−2 log1/2 ns

)
,

(d) sup
x∈[0,1]

∣∣Bs,ns ,3 (x)
∣∣ = Op

(
n−1/2
s h−1/2 log1/2 ns

)
.

Denote

Bn1,n2 (x) = σ−2
1 (x) B1,n1 (x) − σ−2

2 (x) B2,n2 (x)

Bn1,n2,3 (x) = σ−2
1 (x) B1,n1,3 (x) − σ−2

2 (x) B2,n2,3 (x) .

Lemma 5 Under Assumptions (A2)–(A4), (A6), (A7), as n → ∞,

sup
x∈In

∣∣∣∣∣
ln

σ̃ 2
1 (x)

σ̃ 2
2 (x)

− ln
σ 2
1 (x)

σ 2
2 (x)

− Bn1,n2,3 (x)

∣∣∣∣∣

= Op

(
n−1/2
1 h−1/2 log1/2 n1 + n−1/2

2 h−1/2 log1/2 n2
)

+Op

(
hθ0+p0−1 + nβ1−1

1 h−1 + nβ2−1
2 h−1

)
+ op (1) .

Consequently,

ah

{

v−1
n sup

x∈In

∣∣∣∣∣
ln

σ̃ 2
1 (x)

σ̃ 2
2 (x)

− ln
σ 2
1 (x)

σ 2
2 (x)

∣∣∣∣∣

}

= ah

{

v−1
n sup

x∈In

∣∣Bn1,n2,3 (x)
∣∣
}

+ op (1) ,

where ah and vn are given in (5).

Proof According to Lemmas 2–4, one has

sup
x∈In

∣∣∣ f̂ −1
s (x)

{
As,ns (x) + Bs,ns (x)

}∣∣∣

≤ sup
x∈In

∣∣∣ f̂ −1
s (x)

∣∣∣ sup
x∈In

∣∣As,ns (x) + Bs,ns (x)
∣∣

≤
{
1 + O

(
n−1
s h−2

)}{

sup
x∈In

∣∣As,ns (x)
∣∣ + sup

x∈In

∣∣Bs,ns (x)
∣∣
}

≤ O
(
hθ0+p0−1 + n−1

s h−1
)

+ sup
x∈In

∣∣Bs,ns (x)
∣∣

≤ O
(
hθ0+p0−1 + n−1

s h−1
)

+ sup
x∈[0,1]

∣∣Bs,ns (x) − Bs,ns ,1 (x)
∣∣
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+ sup
x∈[0,1]

∣∣Bs,ns ,1 (x) − Bs,ns ,2 (x)
∣∣

+ sup
x∈In

∣∣Bs,ns ,2 (x) − Bs,ns ,3 (x)
∣∣ + sup

x∈[0,1]
∣∣Bs,ns ,3 (x)

∣∣

≤ Op

(
hθ0+p0−1 + nβs−1

s h−1 + n−1/2
s h−1/2 log1/2 ns

)

Now applying Taylor series expansions to ln σ̃ 2
s (x) − ln σ 2

s (x), for s = 1, 2

sup
x∈In

∣∣∣ln σ̃ 2
s (x) − ln σ 2

s (x)
∣∣∣

= sup
x∈In

∣∣∣ln
[
σ 2
s (x) + f̂ −1

s (x)
{
As,ns (x) + Bs,ns (x)

}] − ln σ 2
s (x)

∣∣∣

≤ sup
x∈In

∣∣∣σ−2
s (x) f̂ −1

s (x)
{
As,ns (x) + Bs,ns (x)

}∣∣∣ + op (1) .

Then one obtains

ln
σ̃ 2
1 (x)

σ̃ 2
2 (x)

− ln
σ 2
1 (x)

σ 2
2 (x)

− Bn1,n2,,3 (x)

= ln σ̃ 2
1 (x) − ln σ 2

1 (x) −
{
ln σ̃ 2

2 (x) − ln σ 2
2 (x)

}
− Bn1,n2,,3 (x)

= σ−2
1 (x) f̂ −1

1 (x)
{
A1,n1 (x) + B1,n1 (x)

}

−σ−2
2 (x) f̂ −1

2 (x)
{
A2,n2 (x) + B2,n2 (x)

} − Bn1,n2,,3 (x) + u p (1)

= σ−2
1 (x) f̂ −1

1 (x) A1,n1 (x) − σ−2
2 (x) f̂ −1

2 (x) A2,n2 (x)

+σ−2
1 (x)

{
f̂ −1
1 (x) − 1

}
B1,n1 (x) − σ−2

2 (x)
{
f̂ −1
2 (x) − 1

}
B2,n2 (x)

+Bn1,n2 (x) − Bn1,n2,,3 (x) + u p (1) .

Since one has

Bn1,n2 (x) − Bn1,n2,,3 (x) = σ−2
1 (x) B1,n1 (x) − σ−2

2 (x) B2,n2 (x)

= σ−2
1 (x)

{
B1,n1 (x) − B1,n1,1 (x)

} + σ−2
1 (x)

{
B1,n1,1 (x) − B1,n1,2 (x)

}

+σ−2
1 (x)

{
B1,n1,2 (x) − B1,n1,3 (x)

} − σ−2
2 (x)

{
B2,n2 (x) − B2,n2,1 (x)

}

−σ−2
2 (x)

{
B2,n2,1 (x) − B2,n2,2 (x)

} − σ−2
2 (x)

{
B2,n2,2 (x) − B2,n2,3 (x)

}
,

(14)

and according to Lemmas 2–4, one has

sup
x∈In

∣∣∣σ−2
s (x) f̂ −1

s (x) As,ns (x)
∣∣∣ = O

(
hθ0+p0−1 + n−1

s h−1
)

, (15)
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sup
x∈In

∣∣∣σ−2
s (x)

{
f̂ −1
s (x) − 1

}
B1,ns (x)

∣∣∣ = Op

(
nβs−1
s h−1 + n−1/2

s h−1/2 log1/2 ns
)

,

(16)

Hence combining (14), (15) and (16), the proof is completed.
Denote the following processes

Y1,n1,1 (x) = h−1n−1/2
1

(
μ1,4 − 1

)1/2
∫

K (x − u/h) dW1,n1 (u), x ∈ [
1, h−1 − 1

]
,

Y2,n2,1 (x) = h−1n−1/2
2

(
μ2,4 − 1

)1/2
∫

K (x − u/h) dW2,n2 (u), x ∈ [
1, h−1 − 1

]
,

Y1,n1,2 (x) = h−1/2n−1/2
1

(
μ1,4 − 1

)1/2
∫

K (x − r) dW1,n1 (r), x ∈ [
1, h−1 − 1

]
,

Y2,n2,2 (x) = h−1/2n−1/2
2

(
μ2,4 − 1

)1/2
∫

K (x − r) dW2,n2 (r), x ∈ [
1, h−1 − 1

]
.

As E
{
B2
n1,n2,3

(x)
}

= h−1
{
n−1
1

(
μ1,4 − 1

) + n−1
2

(
μ2,4 − 1

)} ∫ 1
−1 K

2 (u) du, one

obtains the following standard Gaussian processes,

�1 (x) = Bn1,n2,3 (x)

h−1/2
[{

n−1
1 ν1,4 + n−1

2 ν2,4

} ∫ 1
−1 K

2 (u) du
]1/2 , x ∈ [h, 1 − h] , (17)

�2 (x) = Y1,n1,1 (x) − Y2,n2,1 (x)

h−1/2
[{

n−1
1 ν1,4 + n−1

2 ν2,4

} ∫ 1
−1 K

2 (u) du
]1/2 , x ∈

[
1, h−1 − 1

]
,

(18)

where ν1,4 = μ1,4 − 1 and ν2,4 = μ2,4 − 1.
Another standard Gaussian process is

Y1,n1,2 (x) − Y2,n2,2 (x)

h−1/2
[{

n−1
1 ν1,4 + n−1

2 ν2,4

} ∫ 1
−1 K

2 (u) du
]1/2 , x ∈

[
1, h−1 − 1

]
,

which is ζ (x) defined in (10).

Lemma 6 The absolute maximum of the process �1 (x) follows the same as that of
�2 (x), and the absolute maximum of the process �2 (x) follows the same as that of
ζ (x), that is

sup
x∈[h,1−h]

|�1 (x)| d= sup
x∈[1,h−1−1]

|�2 (x)| d= sup
x∈[1,h−1−1]

|ζ (x)| .

Proof This lemma can be easily obtained by noting the fact that for s = 1, 2, the
process Bn1,n2,3 (x) , x ∈ [h, 1 − h] has the same probability law as Y1,n1,1 (x) −
Y2,n2,1 (x) , x ∈ [

1, h−1 − 1
]
, and the process Ys,ns ,1 (x) , x ∈ [h, 1 − h] has the

same probability law as Ys,ns ,2 (x) , x ∈ [
1, h−1 − 1

]
.
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Proof of Proposition 1 Proposition 1 is a direct corollary of Lemma 5, Lemma 6 and
Proposition 3.

Proof of Proposition 2 According to Theorem2 inCai et al. (2019) and applying Taylor
expansion, one has

sup
x∈In

∣∣∣∣∣
ln

σ̂ 2
1 (x)

σ̂ 2
2 (x)

− ln
σ̃ 2
1 (x)

σ̃ 2
2 (x)

∣∣∣∣∣
= sup

x∈In

∣∣∣ln σ̂ 2
1 (x) − ln σ̃ 2

1 (x) −
{
ln σ̂ 2

2 (x) − ln σ̃ 2
2 (x)

}∣∣∣

≤ sup
x∈In

∣∣∣ln σ̂ 2
1 (x) − ln σ̃ 2

1 (x)
∣∣∣ + sup

x∈In

∣∣∣ln σ̂ 2
2 (x) − ln σ̃ 2

2 (x)
∣∣∣

= sup
x∈In

∣∣∣σ̃−2
1 (x)

{
σ̂ 2
1 (x) − σ̃ 2

1 (x)
}∣∣∣ + sup

x∈In

∣∣∣σ̃−2
2 (x)

{
σ̂ 2
2 (x) − σ̃ 2

2 (x)
}∣∣∣ + Op(n

−1
1 + n−1

2 )

≤ c−2
σ sup

x∈In

∣∣∣σ̂ 2
1 (x) − σ̃ 2

1 (x)
∣∣∣ + c−2

σ sup
x∈In

∣∣∣σ̂ 2
2 (x) − σ̃ 2

2 (x)
∣∣∣ + Op(n

−1
1 + n−1

2 ) = op(n
−1/2),

which completes the proof.

Proof of Proposition 3 For Gaussian process ζ (x), its correlation function is

r (x − y) = corr (ζ (x) , ζ (y)) = E {ζ (x) ζ (y)}
var1/2 {ζ (x)} var1/2 {ζ (y)}

=
(
n−1
1 ν1,4 + n−1

2 ν2,4

)
(K ∗ K ) (x − y)

(
n−1
1 ν1,4 + n−1

2 ν2,4

) ∫ 1
−1 K

2 (u) du

= (K ∗ K ) (x − y)
∫ 1
−1 K

2 (u) du
,

which implies that

r (t) =
∫
K (u) K (u − t) du
∫ 1
−1 K

2 (u) du
.

Define next a Gaussian process ς (t) , 0 ≤ t ≤ T = Tn = h−1 − 2,

ς (t) = ζ (t + 1)

{∫ 1

−1
K 2 (u) du

}−1/2

,

which is stationary with mean zero and variance one, and covariance function

r (t) = Eς (s) ς (t + s) = 1 − Ct2 + o
(
t2
)

, t → 0,
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with C = ∫ 1
−1 K

(1) (u)2 du/2
∫ 1
−1 K

2 (u) du. Hence applying Lemmas 1–6, one has
for h → 0 or T → ∞,

P

[

aT

{

sup
t∈[0,T ]

|ς (t)| − bT

}

≤ z

]

→ e−2e−z
,∀z ∈ R,

where aT = (2 log T )1/2 and bT = aT + a−1
T

{
2−1log

(
CK /

(
4π2

))}
. Note that

aha
−1
T → 1, aT (bT − bh) → 0.

Hence, applying Slutsky’s Theorem twice, one obtains that

ah

{

sup
t∈[0,T ]

|ς (t)| − bh

}

= aha
−1
T

[

aT

{

sup
t∈[0,T ]

|ς (t)| − bT

}]

+ah (bT − bh) ,

which converges in distribution to the same limit as aT
{
supt∈[0,T ] |ς (t)| − bT

}
. Thus

P

[

ah

{

sup
s∈[1,h−1−1]

|ζ (s)| − bh

}

< z

]

→ exp {−2 exp (−z)} , z ∈ R.

Hence the proof is completed.

Proof of Theorem 1 According to Proposition 1, as n → ∞,

P

[

ah

{

v−1
n sup

x∈In

∣∣∣∣∣
ln

σ̃ 2
1 (x)

σ̃ 2
2 (x)

− ln
σ 2
1 (x)

σ 2
2 (x)

∣∣∣∣∣
− bh

}

≤ z

]

→ exp {−2 exp (−z)} , z ∈ R,

(19)

where ah, bh and vn are given in (5). Finally applying Proposition 2, one obtains

ah

{

v−1
n sup

x∈In

∣∣∣∣∣
ln

σ̂ 2
1 (x)

σ̂ 2
2 (x)

− ln
σ̃ 2
1 (x)

σ̃ 2
2 (x)

∣∣∣∣∣

}

= op

({
log

(
h−1

)}1/2
h1/2

)
= op (1) .

Using Slutsky’s Theorem one can substitute ln
σ̂ 2
1 (x)

σ̂ 2
2 (x)

for ln
σ̃ 2
1 (x)

σ̃ 2
2 (x)

in (19). Hence the

proof of Theorem 1 is completed.
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