Supplement to “Oracally Efficient Estimation and Consistent Model Selection for ARMA Time Series with Trend”

Qin Shao

Center for Advanced Statistics and Econometrics Research, Soochow University, Suzhou 215006, China
and Department of Mathematics and Statistics, University of Toledo, Toledo, OH 43606, USA

Lijian Yang

Center for Advanced Statistics and Econometrics Research, Soochow University, Suzhou 215006, China

This Supplement gives the complete proof of Theorem 4 that the B-spline estimator \(\hat{g}_m(\omega) \) in (11) satisfies Assumption (c). To this end, the estimator \(\hat{g}_m(\omega) \) is decomposed as

\[
\hat{g}_m(\omega) = \bar{g}_m(\omega) + \tilde{x}_{n,m}
\]

with noise term \(\tilde{x}_{n,m} \) and signal term \(\bar{g}_m(\omega) \) defined as follows:

\[
\tilde{x}_{n,m} = c^T_m(\omega) \left(\frac{1}{n} C^T_m C_m \right)^{-1} \left(\frac{1}{n} C^T_m x \right),
\]

\[
\bar{g}_m(\omega) = c^T_m(\omega) \left(\frac{1}{n} C^T_m C_m \right)^{-1} \left(\frac{1}{n} C^T_m g \right),
\]

with design matrix \(C_m \) in (8). Denote the set of indices \(i \in \{1, \ldots, n\} \) for which \(c_{j,m}(\omega_i) \neq 0 \) as \(I_{j,m} = \{1 \leq i \leq n : c_{j,m}(\omega_i) \neq 0\} \), and the number of elements in \(I_{j,m} \) as \(n_{j,m} \); for any symmetric real matrix \(A \), denote by \(\lambda_{\max}(A) \) the largest eigenvalue of \(A \). The next lemma sums up some basic facts related to B-splines.

Lemma S.1. Under Assumptions (a)-(b), (c1)-(c2), as \(n \rightarrow \infty \),

1. (1)
 \[
 \max_{1 \leq t \leq n} E \left(\tilde{x}_{t,j,m}^2 \right) = O \left\{ (n^{-1}N) = O \left\{ n^{-1}h^{-1} \right\} \right.;
 \]
 \[= O \left\{ \frac{1}{n} \right\} \] (S.1)
 \[\sup_{\omega \in [0,1]} |g(\omega) - \bar{g}_m(\omega)| = O \left(N^{-(m'+\nu)} \right) = O \left(h^{m'+\nu} \right); \] (S.2)

2. (2) there exist constants \(C_\infty, C_\lambda \in (0, +\infty) \) such that

 \[
 \|C_m\|_\infty = \max_{-m+1 \leq j \leq N} \|c_{j,m}\|_\infty \leq C_\infty h^{-1/2}, \quad \lambda_{\max} \left(n^{-1} C^T_m C_m \right)^{-1} \leq C_\lambda; \] (S.3)

3. (3) for each \(1 - m \leq j \leq N \), the set \(I_{j,m} \) consists of \(n_{j,m} \) consecutive integers from \(\{1, \ldots, n\} \) and that

 \[
 \max_{-m+1 \leq j \leq N} n_{j,m} \leq \lfloor nh \rfloor + 1 \] (S.4)
The “Good Condition” of B-spline basis in Theorem 5.4.2 of DeVore and Lorentz (1993) implies the existence of positive constants $c_0 < C_0$ such that

$$c_0 h \leq \left\| \sum_{j=1}^N b_{j,m}(\omega) \beta_{j,m} \right\|_2 \left(\sum_{j=1}^N \beta_{j,m}^2 \right)^{-1/2} \leq C_0 h, \quad \forall \{\beta_{j,m}\}_{j=1-m}^N \in \mathbb{R}^{N+m}. \quad (S.5)$$

Consequently $c_0 h \leq \|b_{j,m}\|_2 \leq C_0 h$. By the “Partition of Unity” property of B-spline basis (de Boor 2001, page 96), $0 \leq b_{j,m}(\omega) \leq 1$ so $c_{j,m}(\omega) \leq \|b_{j,m}\|_2^{-1} \leq c_0^{-1} h^{-1}$, and the bound in (S.3) on $\|C_m\|_\infty$ follows. The bound on $\lambda_{\text{max}} \left(n^{-1} C_m^T C_m \right)^{-1}$ in (S.3) follows also from (S.5).

The “Partition of Unity” property of B-spline basis (de Boor 2001, page 96) implies that the support of $c_{j,m}$ consists of at most m consecutive integers according to Lemma S.1 (3), (A.1) and (S.4) imply the following

$$\sum_{c_{j,m}(\omega) \in I_{j,m}} \rho_{\xi}^{[k-l]} = \sum_{k,l \in I_{j,m}} \rho_{\xi}^{[k-l]} \leq n_{j,m} \left(1 - \rho_{\xi} \right)^{-1} \leq ([nh] + m) \left(1 - \rho_{\xi} \right)^{-1}. \quad (S.6)$$

The above inequality, the (C_{ξ}, ρ_{ξ})-exponential correlatedness of ξ, and $\min(nh, N/m) > 1$ lead to

$$\text{E}\|C_m^T \xi\|^2 = \sum_{j=-m+1}^N \text{E}(C_{j,m}^T \xi)^2 = \sum_{j=-m+1}^N \sum_{k=1}^n \sum_{l=1}^n c_{j,m}(\omega_k) c_{j,m}(\omega_l) \text{E}(\xi_k \xi_l) \leq \|C_m\|_\infty^2 \sum_{j=-m+1}^N \sum_{c_{j,m}(\omega_k) \in I_{j,m}(\omega_l)} C_{\xi}^{[k-l]} \leq \|C_m\|_\infty^2 C_{\xi} \sum_{j=-m+1}^N ([nh] + m) \left(1 - \rho_{\xi} \right)^{-1} \left(N + m \right) ([nh] + 1) m \leq \|C_m\|_\infty^2 C_{\xi} \left(1 - \rho_{\xi} \right)^{-1} \left(2N \right) (2 \times nh) m = 4m \|C_m\|_\infty^2 C_{\xi} \left(1 - \rho_{\xi} \right)^{-1} Nnh.$$

Making use of (S.3) in Lemma S.1 (2), one obtains that

$$\text{E}\|C_m^T \xi\|^2 \leq 4mC_{\xi}^2 h^{-1} C_{\xi} \left(1 - \rho_{\xi} \right)^{-1} Nnh = 4mC_{\xi}^2 C_{\xi} \left(1 - \rho_{\xi} \right)^{-1} nN.$$

The proof is complete. \qed
Supplement to “Oracularly Efficient Inference for ARMA Time Series”

Lemma S.3. Under Assumptions (a)-(b), (c1)-(c2), for any $1 \leq k \leq p + q$, as $n \to \infty$,

\[
T_{1n} = n^{-1} \sum_{t=p+1}^{n} \left(\sum_{j=0}^{t-1} \theta \pi_{0j} \pi_{t-j} \right) \left(\sum_{j=0}^{t-1} \pi_{0j} \{ g(\omega_{t-j}) - \tilde{g}_m(\omega_{t-j}) \} \right) = o_p(n^{-1/2}),
\]

\[
T_{2n} = n^{-1} \sum_{t=p+1}^{n} \left(\sum_{j=0}^{t-1} \pi_{0j} x_t \pi_{t-j} \right) \left(\sum_{j=0}^{t-1} \theta \pi_{0j} \pi_{t-j} \right) \left(\sum_{j=0}^{t-1} \pi_{0j} \{ g(\omega_{t-j}) - \tilde{g}_m(\omega_{t-j}) \} \right) = o_p(n^{-1/2}),
\]

\[
T_{3n} = n^{-1} \sum_{t=p+1}^{n} \left(\sum_{j=0}^{t-1} \pi_{0j} x_t \pi_{t-j} \right) \left(\sum_{j=0}^{t-1} \theta \pi_{0j} \pi_{t-j} \right) \left(\sum_{j=0}^{t-1} \pi_{0j} \{ g(\omega_{t-j}) - \tilde{g}_m(\omega_{t-j}) \} \right) = o_p(n^{-1/2}),
\]

\[
T_{4n} = n^{-1} \sum_{t=p+1}^{n} \left(\sum_{j=0}^{t-1} \theta \pi_{0j} \pi_{t-j} \right) \left(\sum_{j=0}^{t-1} \pi_{0j} \{ g(\omega_{t-j}) - \tilde{g}_m(\omega_{t-j}) \} \right) = o_p(n^{-1/2}).
\]

Proof. We provide detailed proofs only for T_{1n} and T_{3n} as the proofs for T_{2n} and T_{4n} are similar.

We begin by noting that from the inequality (27) of Yao and Brockwell (2006), $\{ \theta \pi_{0j} / \pi_{t-j} \}_{j=0}^{n-1}$ is (C, s)-exponentially bounded for some $C > 0, s \in (0, 1)$, while $\pi_{0j} \}_{j=0}^{n-1}$ is (C_π, ρ_π)-exponentially bounded by (15).

Now equation (3.3.10) of Brockwell and Davis (1991) ensures that $x = (x_1, \ldots, x_n)^T$ is (C_x, ρ_x)-exponentially correlated for some $C_x > 0, \rho_x \in (0, 1)$. Lemma A.3 then implies that the sequence $\{ \sum_{j=0}^{t-1} (\theta \pi_{0j} / \pi_{t-j}) \}_{t=p+1}^{n}$ is (C_π, ρ_π)-exponentially correlated for some $C_\pi > 0, \rho_\pi \in (0, 1)$. Meanwhile, Lemma A.1 provides that

\[
\max_{p+1 \leq t \leq n} \left| \sum_{j=0}^{t-1} \pi_{0j} \{ g(\omega_{t-j}) - \tilde{g}_m(\omega_{t-j}) \} \right| \leq C_\pi (1 - \rho_\pi)^{-1} \max_{1 \leq t \leq n} |g(\omega_t) - \tilde{g}_m(\omega_t)| = O \left(h^{m' + \nu} \right),
\]

where the last inequality uses (S.2). Now applying Lemma A.2 to the (C_π, ρ_π)-exponentially correlated $\{ \sum_{j=0}^{t-1} (\theta \pi_{0j} / \pi_{t-j}) \}_{t=p+1}^{n}$ and the deterministic sequence $\{ \sum_{j=0}^{t-1} \pi_{0j} \{ g(\omega_{t-j}) - \tilde{g}_m(\omega_{t-j}) \} \}_{t=p+1}^{n}$ with uniform bound $O \left(h^{m' + \nu} \right)$, one obtains that

\[
T_{1n} = n^{-1} \left| \sum_{t=p+1}^{n} \left(\sum_{j=0}^{t-1} \frac{\theta \pi_{0j} x_t \pi_{t-j}}{\pi_{t-j}} \right) \left(\sum_{j=0}^{t-1} \pi_{0j} \{ g(\omega_{t-j}) - \tilde{g}_m(\omega_{t-j}) \} \right) \right| = O_p \left(n^{-1} \times n^{1/2} h^{m' + \nu} \right) = O_p \left(n^{-1/2} h^{m' + \nu} \right) = o_p \left(n^{-1/2} \right),
\]

as $m' + \nu > 1/2, h^{m' + \nu} \to 0$, hence the proof for term T_{1n} is completed.

Define next $(n - p) \times n$ matrices

\[
W_1 = \begin{pmatrix}
\pi_{0,0} & \pi_{0,0-p} & \cdots & \pi_{0,1} & 1 & 0 & \cdots & 0 & 0 \\
\pi_{0,p+1} & \pi_{0,p} & \cdots & \pi_{0,2} & \pi_{0,1} & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\pi_{0,n-1} & \pi_{0,n-2} & \cdots & \pi_{0,n-p} & \pi_{0,n-p-1} & \pi_{0,n-p-2} & \cdots & \pi_{0,1} & 1
\end{pmatrix},
\]
Define $\eta = W_2^T W_1 x$. Since $(\partial \pi_{0j}/\partial \alpha_k)_{j=0}^{n-1}$ is (C, s)-exponentially bounded and $(\pi_{0j})_{j=0}^{n-1}$ is (C_π, ρ_π)-exponentially bounded, Lemma A.3 applied twice imply that η is (C_η, ρ_η)-exponentially correlated for some $C_\eta > 0, \rho_\eta \in (0, 1)$. According to Lemma S.2, $E\|C_m^T \eta\|^2 \leq 4mC^2_\infty C_\eta (1 - \rho_\eta)^{-1} nN$, when $\min(\eta, N/m) > 1$, hence $\|C_m \eta\| = O_p \left((nN)^{1/2} \right)$. Likewise, since $x = (x_1, \cdots, x_n)^T$ is (C_x, ρ_x)-exponentially correlated, $E\|C^T_m x\|^2 \leq 4mC^2_\infty C_x (1 - \rho_x)^{-1} nN$, when $\min(\eta, N/m) > 1$, hence $\|C^T_m x\| = O_p \left((nN)^{1/2} \right)$. Since $\lambda_{\max} (n^{-1} C_m^T C_m)^{-1} \leq C_\lambda$ by (S.3), the term T_3a is bounded by

$$n^{-1} |x^T W_1^T W_2 \tilde{x}| = n^{-2} |\eta^T C_m (n^{-1} C^T_m C_m)^{-1} C^T_m x| \leq n^{-2} \|C^T_m \eta\| \lambda_{\max} (n^{-1} C^T_m C_m)^{-1} \|C^T_m x\| \
\leq C_{\lambda} n^{-2} \times O_p \left((nN)^{1/2} \right) \times O_p \left((nN)^{1/2} \right) = O_p (n^{-1/2}),$$

where the last inequality is due to $N \ll n^{1/2}$ in Assumption (c2). The proof is complete.

Proof of Theorem 4. To show (12), note that

$$\{g(\omega_t) - \tilde{g}_m(\omega_t)\}^2 = \{g(\omega_t) - \tilde{g}_m(\omega_t) - \tilde{x}_{t-j}\}^2 \leq 2 \{g(\omega_t) - \tilde{g}_m(\omega_t)\}^2 + 2 \tilde{x}_{t-j}^2$$

hence (S.2) and (S.1) provide that

$$\max_{1 \leq t \leq n} E \{g(\omega_t) - \tilde{g}_m(\omega_t)\}^2 \leq 2 \max_{1 \leq t \leq n} \{g(\omega_t) - \tilde{g}_m(\omega_t)\}^2 + 2 \max_{1 \leq t \leq n} E \tilde{x}_{t-j}^2 \leq \left\{ \sup_{\omega \in [0, 1]} |g(\omega) - \tilde{g}_m(\omega)| \right\}^2 + O \left\{ (nh)^{-1} \right\} = O \left(N^{-2(m'+\nu)} + n^{-1} N \right) = o \left(n^{-1/2} \right),$$

the last inequality following from Assumption (c2) that $n^{1/4(m'+\nu)} \ll N \ll n^{1/2}$ which implies that $N^{-2(m'+\nu)} \ll n^{-1/2}$ and that $n^{-1} N \ll n^{-1/2}$. Since (12) follows from (S.6), while (13) and (14) follow from Lemma S.3, the proof is complete for Theorem 4. \hfill \Box